| ких и низких темп-р, вплоть до темп-ры жидкого водорода. Сплавы А1-Си-Li по прочности близки сплавам А1-Zn-Mg-Сu, но имеют меньшую плотность и больший модуль упругости; жаропрочны. Сплавы Аl-Li-Mg при той же прочности, что и дуралюмины, имеют пониженную (на 11%) плотность и больший модуль упругости. Открытие и разработка сплавов Al-Li-Mg осуществлены в СССР. Сплавы Al-Be-Mg имеют высокую уд. прочность, очень высокий модуль упругости, свариваются, обладают хорошей коррозионной стойкостью, но их применение в конструкциях связано с рядом ограничений.
В состав деформируемых А. с. входят т. н. спечённые (вместо слитка для дальнейшей деформации используют брикет, спечённый из порошков) А. с. (в 1967 в США объём произ-ва составил ок. 0,5% ). Имеются 2 группы спечённых А. с. пром. значения: САП (спечённая алюминиевая пудра) и САС-1 (спечённый алюминиевый сплав).
САП упрочняется дисперсными частицами окиси алюминия, нерастворимой в алюминии. На частицах чрезвычайно дисперсной алюминиевой пудры в процессе помола её в шаровых мельницах в атмосфере азота с регулируемым содержанием кислорода образуется тончайшая плёнка окислов А1. Помол осуществляется с добавкой стеарина, по мере его улетучивания наряду с дроблением первичных порошков происходит их сращивание в более крупные конгломераты, в результате чего образуется не воспламеняющаяся на воздухе т. н. тяжёлая пудра с плотностью св. 1000 кг/м3. Пудру брикетируют (в холодном и горячем виде), спекают и подвергают дальнейшей деформации - прессованию, прокатке, ковке. Прочность САП возрастает при увеличении содержания первичной окиси алюминия (возникшей на первичных порошках) до 20-22%, при большем содержании снижается. Различают (по содержанию А12О3) 4 марки САП (6-9% - САП1; 9,1-13% - САП2; 13,1-18% - САПЗ; 18,1-20% - САП4). Длит, выдержки САП ниже темп-ры плавления мало влияют на его прочность. Выше 200-250°С, особенно при больших выдержках, САП превосходит все А. с., напр, при 500°С предел прочности сигмаb = 50-80 Мн/м2 (5- 8 кгс/мм ). В виде листов, профилей, поковок, штамповок САП применяется в изделиях, где нужна высокая жаропрочность и коррозионная стойкость. САП содержит большое количество влаги, адсорбированной и прочно удерживаемой окисленной поверхностью порошков и холоднопрессованных брикетов. Для удаления влаги применяется нагрев в вакууме или нейтральной среде неск. ниже темп-ры плавления алюминиевых порошков или холоднопрессованных брикетов. Дегазация САП повышает его пластичность, и он удовлетворительно сваривается аргоно-дуговой сваркой.
САС-1, содержащий 25% Si и 5% Ni (или Fe), получают распылением жидкого сплава, брикетированием пульверизата, прессованием и ковкой прутков. Мельчайшие кристаллики Si и FeAl3(NiAl3), воздействуя на матрицу, упрочняют сплав, повышают модуль упругости и пластичность, снижают коэфф. линейного расширения; этот эффект тем больше, чем мельче твёрдые частицы и меньше просвет между ними. Этот А. с. характеризуется низким коэфф. линейного расширения и повыш. модулем упругости. По этим характеристикам порошковые сплавы заметно превосходят соответствующие литейные А. с.
Литейные А. с. по объёму произ-ва составляют ок. 20% (США, 1967). Для них особенно важны литейные характеристики - высокая жидкотекучееть, малая склонность к образованию усадочных и газовых пустот, трещин, раковин. А. А. Бочвар установил, что эти свойства улучшаются при сравнительно высоком содержании в сплаве легирующих элементов, образующих эвтектику, что приводит, однако, к нек-рому повышению хрупкости сплавов. Важнейшие литейные А. с. содержат св. 4,5% Si (т. н. силумивы). Введение гомеопатич. (сотые доли процента) доз Na позволяет модифицировать структуру доэвтектических и эвтектических силуминов: вместо грубых хрупких кристаллов Si появляются кристаллы сфероидальной формы и пластичность сплава существенно возрастает. Силумины (табл. 3) охватывают двойные сплавы системы Al-Si (АЛ2) и сплавы на основе более сложных систем: Al-Si-Mg (АЛ9), Al-Si-Cu (АЛЗ, АЛ6); Al-Si-Mg-Си (АЛ5, АЛЮ). Сплавы этой группы характеризуются хорошими литейными свойствами, сравнительно высокой коррозионной стойкостью, высокой плотностью (герметичностью), средней прочностью и применяются для сложных отливок. Для борьбы с газовой пористостью силуминов Бочвар и А. Г. Спасский разработали оригинальный и эффективный способ кристаллизации отливок под давлением.
Табл. 2.- Химический состав и механические евойства некоторых деформируемых алюминиевых сплавов (1Мн/м2~0,1 кгс/мм2; 1 кгс/мм2 ~ 10 Мн/м2)
Марка сплава
Основные элементы (% по массе)1
Полуфабрикаты2
Типичные механич. свойства3
Си
Mg
Zn
Si
Mn
предел прочност и сигмаb Мн/мг
предел текучести
сигма0,2
относит, удлинение дельта, %
АМг1
< 0,01
0,5-0,8
_
< 0,05
л
120
50
27,0
АМг6
< 0,1
5,8-6,8
< 0,2
< 0,4
0,5-0,8
Л, Пл, Пр, Пф
340
170
20,0
АД31
< 0,1
0,4-0,9
< 0,2
0,3-0,7
< 0,1
Пр (Л, Пф)
240
220
10,0
АДЗЗ
0,15-0,4
0,8-1,2
< 0,25
0,4-0,8
<0,15
Пф (Пр, Л)
320
260
13,0
АВ
0,2-0,6
0,45-0,9
< 0,2
0,5-1,2
0,15-0,35
Л, Ш, Т, Пр, Пф
340
280
14,0
АК6
1,8-2,6
0,4-0,8
< 0,3
0,7-1,2
0,4-0,8
Ш, Пк, Пр
390
300
10,0
АК8
3,9-4,8
0,4-0,8
< 0,3
0,6-1,2
0,4-1,0
Ш, Пк, Пф, Л
470
380
10,0
Д1
3,8-4,8
0,4^0,8
< 0,3
< 0,7
0,4-0,8
Пл (Л, Пф, Т), Ш, Пк
380
220
12,0
Д16
3,8-4,9
1,2-1,8
< 0,3
< 0,5
0,3-0,9
Л (Пф, Т, Пв)
440
290
19,0
Д19
3,8-4,3
1,7-2,3
< 0,1
< 0,5
0,5-1,0
Пф (Л)
460
340
12,0
В65
3,9-4,5
0,15-0,3
< 0,1
< 0,25
0,3-0,5
Пв
400
20,0
АК4-14
1,9-2,5
1,4-1,8
< 0,3
< 0,35
< 0,2
Пн, Пф (Ш, Пл, Л)
420
350
8,0
Д20
6,0-7,0
< 0,05
< 0,1
< 0,3
0,4-0,8
Л, Пф (Пн, Ш, Пк, Пр)
400
300
10,0
ВАД236
4,9-5,8
< 0,05
< 0,1
< 0,3
0,4-0,8
Пф (Пр, Л)
550
500
4,0
014206
< 0,05
5,0-6,0
--
< 0,007
0,2-0,4
Л (Пф)
440
290
10,0
В92
< 0,05
3,9-4,6
2,9-3,6
< 0,2
0,6-1,0
Л (Пл, Пс, Пр, Пк), Ш, Пф
450
320
13,0
0,19157
< 0,1
1,3-1,8
3,4-4,0
< 0,3
0,2-0,6
Л, (Пф)
350
300
10,0
В93
0,8-1,2
1,6-2,2
6,5-7,3
< 0,2
< 0,1
Ш, (Пк)
480
440
2,5
В95
1,4-2,0
1,8-2,8
5,0-7,0
< 0,5
0,2-0,6
Л, Пд, Пк, Ш, Пф, Пр
560
530
7,0
В96
2,2-2,8
2,5-3,5
7,6-8,6
< 0,3
0,2-0,5
Пф (Пн, Пк, Ш)
670
630
7,0
Примечания. 1 Во всех сплавах в качестве примесей присутствуют Fe и Si; в ряд сплавов вводятся малые добавки Cr, Zr, Ti, Be. 2 Полуфабрикаты: Л - лист; Пф - профиль; Пр - пруток; Пк - покввка; Ш - штамповка; Пв - проволока; Т - трубы; Пл - плиты; Пн - панели; Пс - полосы; Ф - фольга. 3 Свойства получены по полуфабрикатам, показанным без скобок. 4 С добавкой 1,8 - 1,3 % Ni и 0,8 - 1,3 % Fe. 5 С добавкой 1,2 - l,4% Li. 0С добавкой 1,9 - 2,3% Li. 7C добавкой 0,2 - 0,4% Fe.
К сплавам с высоким содержанием Mg (свыше 5% ) относятся двойные А1-Mg (АЛ8), сплавы системы Al-Mg-Si с добавкой Мп (АЛ 13 и АЛ28), Be и Ti (АЛ22). Сплавы этой группы коррозион-ностойки, высокопрочны и обладают пониженной плотностью. Наиболее высокопрочен сплав АЛ8, но технология его изготовления сложна. Для уменьшения окис-ляемости в жидком состоянии в него вводится 0,05-0,07% Be, а для измельчения зерна - такое же количество Ti, в формовочную смесь для подавления реакции металла с влагой добавляется борная к-та. Сплав АЛЗ отливается гл. обр. в земляные формы. Сплавы АЛ13 и АЛ28 имеют лучшие литейные свойства, но меньшую прочность и не способны упрочняться термич. обработкой; они отливаются в кокиль под давлением и в землю. Длит, низкотемпературные нагревы могут привести к ухудшению коррозионной стойкости литейных А. с. с высоким содержанием Mg.
Табл. 3. - Химический состав и механические свойства некоторых литейных алюминиевых сплавов ( 1 Мн/м2 ~ 0 , 1 кгс/мм2 ; 1 кгс/мм2 ~10 Мн/м2)
Элементы (% по массе)
Типичные механич. свойства
Марка сплава
Вид литья1
предел прочности
Мн/мг
предел текучести
Мн/м2
относит, удлинение , %
Си
Mg
Мп
Si
АЛ8
9,5-11,5
0,1
0,3
3, В, О
320
170
11,0
АЛ 2
0,8
0,5
10-13
Все виды литья
200
110
3,0
АЛ9
0,2
0,2-0,4
0,5
6-8
" " "
230
130
7,0
АЛ 4
0,3
0,17-0,3
0,25-0,5
8-10,5
" " "
260
200
4,0
АЛ5
1,0-1,5
0,35-0,6
0,5
4,5-5,5
" " "
240
180
1,0
АЛЗ
1,5-3,5
0,2-0,8
0,2-0,8
4,0-6,0
Все виды литья, кроме Д .
230
170
1,0
АЛ25
1,5-3,0
0,8-1,2
6,3-0,6
11-13
К
200
180
0,5
АЛЗО
0,8-1,5
0,8-1,3
0,2
11-13
К
200
180
0,7
АЛ 7
4-5
0,03
1,2
230
150
5,0
АЛ1
3,75-4,5
1,25-1,75
0,7
Все виды литья, кроме Д
260
220
0,5
АЛ19
4,5-5,3
20,95
0,6-1,0
0,3
3, О, В
370
260
5,0
АЛ242
0,2
1,5-2,0
0,2-0,5
0,3
3, О, В
290
3,0
Примечание. 1 Виды литья: 3 - в землю; В - по выплавляемым моделям; О - в оболочковые формы; К - в кокиль; Д - под давлением. 2 Zn 3,5-4,5%
Сплавы с высоким содержанием Zn (св. 3%) систем Al-Si-Zn (АЛИ) и А1-Zn-Mg-Си (АЛ24) имеют повышенную плотность и пониженную коррозионную стойкость, но обладают хорошими литейными свойствами и могут применяться без термич. обработки. Широкого распространения они не получили.
Сплавы с высоким содержанием Си (св. 4% ) - двойные сплавы А1-Си (АЛ7) и сплавы тройной системы Аl-Сu-Мn с добавкой Ti (АЛ19) по жаропрочности превосходят сплавы первых трёх групп, но имеют неск. пониженные коррозионную стойкость, литейные свойства и герметичность.
Сплавы системы А1-Сu-Mg-Ni и Al-Cu-Mg-Mn-Ni (АЛ1, АЛ21) отличаются высокой жаропрочностью, но плохо обрабатываются.
Свойства литейных сплавов существенно меняются в зависимости от способа литья; они тем выше, чем больше скорость кристаллизации и питание кристаллизующегося слоя. Как правило, наиболее высокие характеристики достигаются при кокильном литье. Свойства отдельно отлитых образцов могут на 25-40% превосходить свойства кристаллизовавшихся наиболее медленно или плохо питаемых частей отливки. Нек-рые элементы, являющиеся легирующими для одних сплавов, оказывают вредное влияние на другие. Кремний снижает прочность сплавов систем А1-Mg и ухудшает механич. свойства сплавов систем Аl-Si и Аl-Сu. Олово и свинец даже в десятых долях процента значительно понижают темп-ру начала плавления сплавов. Вредное влияние на силумины оказывает железо, вызывающее образование хрупкой эвтектики Al-Si-Fe, к |