| ристаллизующейся в виде пластин. Содержание железа регулируется в зависимости от способа литья: оно максимально при литье под давлением и в кокиль и сильно снижено при литье в землю. Уменьшением вредных метал-лич. и неметаллич. примесей в сплавах с применением чистой шихты и рафинирования, введением малых добавок Ti, Zr, Be, модифицированием сплавов и их термич. обработкой можно существенно повысить свойства фасонных отливок из А. с. Рафинирование осуществляется: продувкой газом (хлором, азотом, аргоном); воздействием флюсов, содержащих хлористые и фтористые соли; выдерживанием в вакууме или сочетанием этих способов.
Табл. 4.- Распределение потребления алюминиевых сплавов по отраслям промышленности в США (тыс. т)
Область применения
1962
1965
1967
Строительство
613
846
862
Транспорт
612
838
862
Предметы длительного потребления
290,2
383
381
Электропромышлен-
485
490
576
Машиностроение и приборостроен ие
190,5
258,5
279
Контейнеры и упаковка
175
298
397
Экспорт
188
260,2
415
Всего
2553,7
3373,7
3772
С каждым годом увеличивается объём потребления А. с. в различных отраслях техники (табл. 4). За 5 лет применение А. с. в США увеличилось примерно в 1,6 раза и превышает (1967) по объёму 10% от потребления стали (в СССР за 1966-70 намечено увеличение произ-ва А. с. более чем в 2 раза). Наряду с транспортом (авиация, суда, вагоны, автомобили) А. с. находят огромное применение в строительстве - оконные рамы, стенные панели и подвесные потолки, обои; бурно расширяется использование А. с. для производства контейнеров и др. упаковки, в электропром-сти (провода, кабели, обмотки электродвигателей и генераторов).
Большой интерес представляет распределение произ-ва А. с. по различным видам полуфабрикатов (табл. 5).
Табл. 5.- Объём производства полуфабрикатов из алюминиевых сплавов в США (тыс. т)
Вид полуфабриката
1955
1960
1965
Листы и плиты
610
630
1238
Фольга
89,9
131,1
184,1
Другие катаные полуфабрикаты
49,9
42,2
74,8
Проволока
28
25,1
38,6
Кабель
71,2
83
195,2
Проволока и кабель с покрытием
18
27,4
58,7
Прессованные полуфабрикаты
309,5
386
700
Волочёные трубы
30,5
27,4
37,6
Сварные трубы
11,6
11,7
42,5
Порошки
16,2
14,9
27,2
Поковки, штамповки
31,9
22,7
43,2
Литьё в землю
75
58,9
124,5
Литьё в кокиль
135,2
117
150
Литьё под давлением
161,1
175
365
Всего
1638
1752,4
3279,4
Лит.: Сваривающиеся алюминиевые сплавы. (Свойства и применение), Л., 1959; Добаткин В. И., Слитки алюминиевых сплавов, Свердловск, 1960; Фридляндер И. Н., Высокопрочные деформируемые алюминиевые сплавы, М., 1960; Колобнев И. Ф., Термическая обработка алюминиевых сплавов, М., 1961; Строительные конструкции из алюминиевых сплавов [Сб. ст.], М., 1962; Алюминиевые сплавы в. 1 - 6, М., 1963 - 69; Альтман М. Б. Лебедев А. А., Чухров М. В. Плавка и литье сплавов цветных металлов М., 1963; Воронов С. М., Металловедение легких сплавов, М., 1965; Аltеnpohl D., Aluminium und Aluminiumle-fierungftn, В.- [и. а.], 1965; L'Alumimum, d. P. Barrand, R. Gadeau, t. 1 - 2, P., 1964; Aluminium, ed. R. Kent Van Horn, v. 1-3, N. Y., 1967. Я. Н. Фридляндер.
АЛЮМИНИЕВЫЙ КАРТЕЛЬ, см. Каротели по цветным металлам.
АЛЮМИНИЙ (лат. Aluminium), Al, химич. элемент III группы периодич. системы Менделеева; ат. н. 13, ат. масса 26,9815; серебристо-белый лёгкий металл. Состоит из одного стабильного изотопа 27А1. Историческая справка. Название А. происходит от лат. alumen - так ещё за 500 лет до н. э. назывались алюминиевые квасцы, к-рые применялись как протрава при крашении тканей и для дубления кожи. Датский учёный X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl3 и затем отгоняя ртуть, получил относительно чистый А. Первый пром. способ произ-ва А. предложил в 1854 франц. химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида А. и натрия Na3AlCl6 металлич. натрием. Похожий по цвету на серебро, А. на первых порах ценился очень дорого. С 1855 по 1890 было получено всего 200 т А. Современный способ получения А. электролизом криолито-глинозёмного расплава разработан в 1886 одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.
Распространённость в природе. По распространённости в природе А. занимает 3-е место после кислорода и кремния и 1-е - среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде А. в силу своей хим. активности не встречается. Известно несколько сотен минералов А., преим. алюмосиликатов. Промышленное значение имеют боксит, алу-нит и нефелин. Нефелиновые породы беднее бокситов глинозёмом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная к-та. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности. Физические и химические свойства. А. сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и элек-трич. проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддаётся ковке, штамповке, нрокатке, волочению. А. хорошо сваривается газовой, контактной и др. видами сварки. Решётка А. кубич. гранецентри-рованная с параметром а = 4,0413 А. Свойства А., как и всех металлов, в значит, степени зависят от его чистоты. Свойства А. особой чистоты (99,996% ): плотность (при 20°С) 2698,9 кг/м3; tпл 660,24°С; tкип ок. 2500°С; коэфф. тер-мич. расширения (от 20° до 100°С) 23,86*10-6; теплопроводность (при 190°С) 343 вт/м-К (0,82 кал/см*сек*°С), уд. теплоёмкость (при 100°С)931,98 дж/кг-К. (0,2226 кал/г- °С); электропроводность по отношению к меди (при 20 °С) 6.5,5%. А. обладает невысокой прочностью (предел прочности 50-60 Мн/м2), твёрдостью (170 Мн/м2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности А. возрастает до 115 Мн/м2, твёрдость - до 270 Мн/м2, относительное удлинение снижается до 5% (1 Мн/м2~ и 0,1 кгс/мм2). А. хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, А. на воздухе покрывается тонкой, но очень прочной плёнкой окиси А12О3, защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность окисной плёнки и защитное действие её сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. А. стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной к-той, с органич. к-тами, пищ. продуктами.
Внешняя электронная оболочка атома А. состоит из 3 электронов и имеет строение 3 s2 Зр. В обычных условиях А. в соединениях 3-валентен, но при высоких темп-pax может быть одновалентным, образуя т. н. субсоединения. Субгалогени-ды A., AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении темп-ры распадаются (диспропорциони-руют) на чистый Аl и AlF3 или АlСl3 и поэтому могут быть использованы для получения сверхчистого А. При накаливании мелкоизмельчённый или порошкообразный А. энергично сгорает на воздухе. Сжиганием А. в токе кислорода достигается темп-pa выше 3000°С. Свойством А. активно взаимодействовать с кислородом пользуются для восстановления металлов из их окислов (см. Алюмино-термия). При тёмно-красном калении фтор энергично взаимодействует с А., образуя AlF3 (см. Алюминия фторид). Хлор и жидкий бром реагируют с А. при комнатной темп-ре, иод - при нагревании (см. Алюминия хлорид). При высокой темп-ре А. соединяется с азотом, углеродом и серой, образуя соответственно нитрид A1N, карбид Al4C3 и сульфид A12S3. С водородом А. не взаимодействует; гидрид А. (А1Нз)х получен косвенным путём. Большой интерес представляют двойные гидриды А. и элементов I и II групп периодич. системы состава МеНn*nAlHз, т.н. алюмогидриды (см. Алюминия гидрид). А. легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей А. хорошо растворимо в воде. Растворы солей А. вследствие гидролиза показывают кислую реакцию (см. Алюминия сульфат, Алюминия нитрат).
Получение. В пром-сти А. получают электролизом глинозёма А12О3 (см. Алюминия окись), растворённого в расплавленном криолите NasAlF6 при темп-ре ок. 950° С. Используются электролизеры трёх основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожжёнными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом - огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объём заполняется расплавленным электролитом, состоящим из 6-8% глинозёма и 94-92% криолита (обычно с добавкой A1F6 и ок. 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом - погружённые в электролит угольные обожжённые блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный А., к-рый накапливается на подине, а на аноде - кислород, образующий с угольным анодом СО и СO2. К глинозёму, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нём окислов более электроположительных элементов, чем А., ведёт к загрязнению А. При достаточном содержании глинозёма ванна работает нормально при электрич. напряжении порядка 4-4,5 в. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 ка. Из ванн А. извлекают обычно с помощью вакуум-ковша. Расплавленный А. чистотой 99,7% разливают в формы. А. высокой чистоты (99,9965% ) получают электролитич. рафинированием первичного А. с помощью т. н. трёхслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитич. рафинирования А. с применением органич. электролитов показали принципиальную возможность получения А. чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки А. применяют зонную плавку или дистилляцию его через субфторид.
При электролитич. производстве А. возможны поражения электрич. током, высокой темп-рой и вредными газами. Для избежания несчастных случаев ванны надёжно изолируют, рабочие пользуются сухими валенками, соответствующей спецодеждой. Здоровая атмосфера поддерживается эффективной вентиляцией. При постоянном вдыхании пыли металлич. А. и его окиси может возникнуть алюминоз лёгких (см. Пневмокониоэы). У рабочих, занятых в произ-ве А., часты катары верхних дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая концентрация в воздухе пыли металлич. А., его окиси и сплавов 2 мг/м3.
Применение. Сочетание физ., механич. и хим. свойств А. определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с др. металлами (см. Алюминиевые сплавы). В электротехнике А. успешно заменяет медь, особенно в произ-ве массивных проводников, напр, в воздушных линиях, высоковольтных кабелях, шинах распределит, устройств, трансформаторах (электрич. проводимость А. достигает 65,5% электрич. проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из А. вдвое меньше медных). Сверхчистый А. употребляют в произ-ве электрич. конденсаторов и выпрямителей, действие к-рых основано на способности окисной плёнки А. пропускать электрич. ток только в одном направлении. Сверхчистый А., очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа АIII BV,применяемых для производства полупроводниковых приборов. Чистый А. используют в произ-ве разного рода зеркал отражателей. А. высокой чистоты применяют для предохранения металлич. поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, А. применяется как конструкционный материал в ядерных реакторах.
В алюминиевых резервуарах большой ёмкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную к-ты, чистую воду, перекись водорода и пищ. масла. А. широко применяют в оборудовании и аппаратах пищ. пром-сти, для упаковки пищ. продуктов (в виде фольги), для произ-ва разного рода бытовых изделий. Резко возросло потребление А. для отделки зданий, архитектурных, транспортных и спортивных сооружений.
В металлургии А. (помимо сплавов на его основе)- одна из самых распространённых легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют А. также для раскисления стали перед заливкой её в форму, а также в процессах получения нек-рых металлов методом алюминотермии. На основе А. методом порошковой металлургии создан САП (спечённый алюминиевый порошок), обладающий при темп-pax выше 300°С большой жаропрочностью.
А. используют в произ-ве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения А.
Произ-во и потребление А. непрерывно растёт, значительно опережая по темпам роста произ-во стали, меди, свинца, цинка.
Лит.: Беляев А. И., Вольф-сон Г. Е., Лазарев Г. И., Фирсанова Л. А., Получение чистого алюминия, [M.J, 1967; Беляев А. И., Раппопорт Н. Б., Фирсанова Л. А., Электрометаллургия алюминия, М., 1953; Беляев А. И., История алюминия, в сб.; Труды Ин-та истории естествознания и техники, т. 20, М., 1959; Фридляндер И. Н., Алюминий и его сплавы, М., 1965. Ю. И. Романьков.
Геохимия А. Геохимич. черты А. определяются его большим сродством к кислороду (в минералах А. входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород А. входит в кристал-лич. решётку полевых шпатов, слюд и др. ми |