БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

АВСТРОМАРКСИЗМ, течение, сложившееся в начале 20 в.
ВЕЛИКОЕ ПЕРЕСЕЛЕНИЕ НАРОДОВ, условное название совокупности этнич. перемещений.
ОРГАНИЗАТОР (эмбриологич.), область зародыша хордовых животных.
ОРХОНО-ЕНИСЕЙСКИЕ НАДПИСИ, древнейшие письм. памятники тюрко-язычпых народов.
ВЕРЁВОЧНЫЙ МНОГОУГОЛЬНИК, графич. метод отыскания.
АГРОФИТОЦЕНОЗЫ (от агро..., греч. phyton - растение и koinos - общий).
ВОСПЛАМЕНИТЕЛЬНЫЕ СОСТАВЫ, смеси для воспламенения порохов.
ГАСТРОЦЕЛЬ (от гастро... и греч. koilia - пустота, полость).
ГЕОГРАФИЯ СЕЛЬСКОГО ХОЗЯЙСТВА, отрасль экономической географии.
ГЖЕЛЬСКАЯ КЕРАМИКА, изделия керамических предприятий.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

нералов - алюмосиликатов. В биосфере А.- слабый миграт, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органич. кислот, А. мигрирует в почвах и водах в виде органо-минеральных коллоидных соединений; А. адсорбируется коллоидами и осаждается в нижней части почв. Связь А. с кремнием частично нарушается и местами в тропиках образуются минералы - гидроокислы А.- бёмит, диаспор, гидраргиллит. Большая же часть А. входит в состав алюмосиликатов - каолинита, бейделлита и др. глинистых минералов. Слабая подвижность определяет остаточное накопление А. в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологич. эпохи бокситы накапливались также в озёрах и прибрежной зоне морей тропич. областей (напр., осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, А. почти не мигрирует. Наиболее энергична миграция А. в вулканич. областях, где наблюдаются сильнокислые речные и подземные воды, богатые А. В местах смещения кислых вод с щелочными - морскими (в устьях рек и др.), А. осаждается с образованием бокситовых месторождений. А. И. Перельман.

Алюминий в организме. А. входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10~3 до 10~5% А. (на сырое вещество). А. накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание А. колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (жёлтая репа), в продуктах животного происхождения - от 4 мг (мёд) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание А. достигает 35- 40 мг. Известны организмы - концентраторы А., напр, плауны (Lycopodiaceae), содержащие в золе до 5,3% А., моллюски (Helix и Lithorina), в золе к-рых 0,2- 0,8% А. Образуя нерастворимые соединения с фосфатами, А. нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

Лит.: Войнар А. О., Биологическая роль микроэлементов в организме животных и человека, 2 изд., М., 1960, с. 73-77.

В. В. Ковальский.

АЛЮМИНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, металлоорганич. соединения, в к-рых алюминий связан непосредственно с атомом углерода. А. с. известны двух типов: полные R3Al и неполные R2AlX или RAlX2 (где R - СНз, С2Н5, С6Н5 и др., а X - галоген, OR или Н). Алюминийтриалкилы - бесцветные жидкости, крайне чувствительные к кислороду и влаге; триметил- и триэтилалю-миний самовоспламеняются на воздухе, водой разлагаются со взрывом. Работы с А. с. проводят в атмосфере инертного газа (азот, аргон). Все А. с. дают прочные комплексы с эфиром, аминами, напр. (СН3)3Аl*О(СН3)2 и (СН3)3Аl*N(СН3)3; с NaR и LiR образуются комплексы типа Me[AlR4]. Все эти комплексы менее реакционноспособны, но тоже воспламеняются на воздухе.

Получают А. с. действием галогеналки-лов на сплав магния с алюминием, напр.: 6C2H5Br + 2Al + 3Mg = 2(С2Н3)зАl + + 3MgBr2.

А. с. применяют в пром-сти как катализаторы полимеризации олефинов при низком давлении, напр, в произ-ве полиэтилена низкого давления, а также для получения алюминия особой чистоты.

АЛЮМИНИРОВАНИЕ, то же, что алитирование.

АЛЮМИНИЯ ГИДРИД, [АlН3]х, соединение алюминия с водородом, белая некристаллическая масса, разлагающаяся выше 105°С с отщеплением водорода. Получен впервые в 1942 при действии тлеющего разряда на смесь триметилалюминия и водорода. А. т. способен образовывать двойные гидриды состава МеНn-•nАlН3 (где Me - металл), наз. алюмогидридами, а также аланатами. Это белые твёрдые вещества, растворимые в эфире, водой разлагаются с выделением водорода. Алюмогадриды широко применяют в органич. химии как гидрирующие средства. Алюмогидрид лития LiAlH4 - быстродействующий сильный и селективный восстановитель. В неорганич. синтезе его применяют для получения летучих гидридов бора, алюминия, кремния, германия, олова и др.

АЛЮМИНИЯ НИТРАТ, азотнокислый алюминий, Al(NO3)3, соль, при обычной темп-ре существует в виде Al(NO3)39H2O - бесцветных расплывающихся на воздухе кристаллов с tпл 73,5°С. Выше этой темп-ры гидрат теряет воду, а ок. 200°С превращается в Аl2О3. А. н. хорошо растворим в воде (63,7 г безводной соли в 100 г Н2О при 25°С). Получают А. н. растворением Аl(ОН)3 в HNO3 с последующим упари-ванием раствора. Применяют как протраву при крашении и для др. целей.

АЛЮМИНИЯ ОКИСЬ, глинозём, Аl2О3, соединение алюминия с кислородом; составная часть глин, исходный продукт для получения алюминия. Бесцветные кристаллы, (tпл 2050°С, tкип выше 3000°С. Известна в двух модификациях, а и гамма. Из них в природе встречается а-Аl2О3 в виде бесцветного минерала корунда; кристаллы a-Аl2О3, окрашенные окислами др. металлов в красный цвет - рубин, и в синий - сапфир, являются драгоценными камнями. Корунд кристаллизуется в гексагональной системе, плотность 3960 кг/м3; искусственно а-Аl2О3 можно получить нагреванием выше 900 °С гидроокиси алюминия или его солей. При нагревании алюминиевых солей в пределах 600-900°С образуется гамма-А12О3, кубич. модификация, которая выше этой темп-ры необратимо переходит в а-Аl2О3. Известны гидратированные (водные) формы Аl2О3 различного состава. К гидроокисям алюминия относятся: гидраргиллит (гиббсит) Аl(ОН)з, входящий в состав многих бокситов, и искусственно получаемая неустойчивая форма Аl(ОН)3 - байерит. Известна и неполная гидроокись алюминия - АlООН, существующая в двух модификациях - а (диаспор) и у (бёмит).

А. о. и её гидратированные формы нерастворимы в воде, обладают амфо-терными свойствами - взаимодействуют с кислотами и щелочами. Природный корунд на воздухе химически инертен и негигроскопичен. Со щелочами интенсивно реагирует ок. 1000°С, образуя растворимые в воде алюминаты щелочных металлов. Медленнее реагирует с SiO2 и кислыми шлаками с образованием алюмосиликатов, разлагается сплавлением с KHSO4.

Сырьём для получения А. о. служат бокситы, нефелины, каолины и другое сырьё, содержащее А1. Бокситы всегда загрязнены окислами железа или кремневой к-той. Для получения чистой А. о. бокситы перерабатывают нагреванием с СаО и Na2CO3 (сухой способ) или нагреванием с едким натром в автоклавах (способ Байера). При обоих способах А. о. в виде алюминатов переходит в раствор, к-рый затем разлагают пропусканием двуокиси углерода либо добавлением заранее приготовленной гидроокиси алюминия. В первом случае разложение происходит по уравнению 2[Аl(ОН)4]-+ СО2->2Аl(ОН)3 + СО32- + + Н2О. Разложение по второму способу основано на том, что раствор алюмината, полученный при нагревании в автоклаве, метастабилен. Добавляемая гидроокись алюминия ускоряет распад алюмината: [А1(ОН)4]- -> Аl(ОН)3 + ОН-. Полученную гидроокись алюминия прокаливают при 1200°С, в результате получается чистый глинозём.

Основное применение А. о.- производство алюминия. Корунд широко используют как абразивный материал (корундовые круги, наждак), а также для изготовления керамич. резцов и чрезвычайно огнеупорных материалов, в частности "плавленого глинозёма", служащего для футеровки цементных печей. Из мо-, нокристаллов корунда, полученных плавкой порошка А. о. с добавками окислов Cr, Fe, Ti, V, изготовляют опорные камни в точных механизмах и ювелирные изделия.

Дистилляцией чистого алюминия при 1650°С в атмосфере водорода, содержащей пары воды, получены "усы" (нитеобразные кристаллы) из А. о., обладающие огромной прочностью, близкой к теоретической. "Усы" из сапфира (а-А12Оз) диаметром 2-3 мкм обладают прочностью 16 Гн/м2, диаметром 10 мкм- 11 Гн/м3, "усы" больших диаметров -6,5-7 Гн/м2 (1 Гн/м2 = = 100 кгс/м2). Введение этих "усов" в конструкционные материалы, даже при условии частичного сохранения их прочности, позволяет получить ценные материалы для ракетостроения. Металлы, армированные такими волокнами, имеют более высокую прочность не только при низких, но и при высоких темп-рах.

Особым образом приготовленную т. н. активную А. о. в виде мелкокри-сталлич. порошка применяют как адсорбент и катализатор, причём её адсорбционные (и каталитические) свойства в большой степени зависят от качества и обработки исходных материалов и от способа приготовления. Как адсорбент активную А. о. широко применяют для хроматографич. анализа всевозможных органических и (реже) неорганич. веществ. Гидроокиси алюминия служат для произ-ва всевозможных его солей. Осторожным высушиванием студнеобразной гидроокиси получают алюмогель, пористое вещество, напоминающее фарфор, иногда прозрачное; алюмо-гель применяют в катализе; она служит одним из наиболее важных технич. адсорбентов.

Лит.: Лайнер А. И., Производство глинозема, М., 1961; Карролл-Порчинский Ц., Материалы будущего, пер. с англ., М., 1966. Ю. И. Романъков.

АЛЮМИНИЯ СУЛЬФАТ, сернокислый алюминий, Аl2(SО4)3, соль, при обычных условиях существует в виде кристаллогидрата Al2(SO4)3 • 18Н2О - бесцветных кристаллов с плотностью 1690 кг/м3. При нагревании теряет воду не плавясь, при прокаливании распадается на Аl2О3 и SO3. Легко растворим в воде (36,15 г безводной соли в 100 г Н2О при 20°С). Технический А. с. можно получить, обрабатывая серной к-той боксит или глину, а чистый продукт,- растворяя Аl(ОН)3 в горячей конц. H2SO4. В пром-сти А. с. применяют для тех же целей, что и алюминиевые квасцы.

АЛЮМИНИЯ ФТОРИД, фтористый алюминий, АlР3, соль, бесцветные кристаллы,плотность 3100 кг/м3. При нагревании возгоняется без плавления. В воде очень мало растворим (0,559 г в 100 г Н2О при 25°С), со щелочами и кислотами (кроме кипящей серной) не реагирует. А. ф. образует многочисленные комплексные соединения, напр. Na3AlF6, т. н. криолит, широко применяемый в алюминиевой пром-сти. А. ф. можно получить пропусканием HF над Аl или Аl2Оз при красном калении и др. способами. Его используют как составную часть электролита, служащего для получения и очистки алюминия.

АЛЮМИНИЯ ХЛОРИД, хлористый алюминий, АlСl3, соль, бесцветные кристаллы, плотность 2440 кг/м3. При обычном давлении возгоняется при 183°С не плавясь (под давлением плавится при 192,6°С). В воде хорошо растворим (44,38 г в 100 г Н2О при 25°С); вследствие гидролиза дымит во влажном воздухе, выделяя НСl. Из водных растворов выпадает гидрат А1С13-•6Н2О - желтовато-белые расплывающиеся кристаллы. Хорошо растворим во многих органич. соединениях. Безводный А. х. образует продукты присоединения со многими неорганическими (напр., NH3, H2S, SO2) и органическими (хлоран-гидриды кислот, эфиры и др.) веществами, с чем связано важнейшее технич. применение АlСlз как катализатора при переработке нефти и при органич. синтезах (см., напр., Фриделя-Крафтса реакция). Важнейший способ получения А. х. - действие смеси С12 и СО на обезвоженный каолин или боксит в шахтных печах: Аl2О3 + ЗСО + ЗСl2->2АlСl3 + ЗСО2.

Лит.: Томас Ч. А., Безводный хлористый алюминий в органической химии, пер. с англ., М., 1949.

АЛЮМИНОТЕРМИЯ (от алюминий и греч. therme - теплота), алюминотермический процесс, получение металлов и сплавов восстановлением окислов металлов алюминием (см. Металлотермия). Шихта (из порошкообразных материалов) засыпается в плавильную шахту или тигель и поджигается с помощью запальной смеси. Если при восстановлении выделяется много теплоты, осуществляется внепечная А., без подвода тепла извне, развивается высокая температура (1900-2400°С), процесс протекает с большой скоростью, образующиеся металл и шлак хорошо разделяются. Если теплоты выделяется недостаточно, в шихту вводят подогревающую добавку или проводят плавку в дуговых печах (электропечная А.). В Советском Союзе электропечная А. широко распространена. А. применяют для получения низкоуглеродистых легирующих сплавов трудновосстановимых металлов - титана, ниобия, циркония, бора, хрома и др., для сварки рельсов

Алюминотермическое производство ферросплавов и лигатур, М., 1963.

"АЛЮМИНУМ КОМПАНИ ОФ АМЕРИКА", АЛКОА (Aluminum Company of America, ALCOA, США), см. Алюминиевые монополии.

АЛЮМОГЕЛЬ, см. Алюминия окись.

АЛЮМОГИДРИДЫ, см. Алюминия гидрид.

АЛЮМОСИЛИКАТНЫЕ ОГНЕУПОРНЫЕ ИЗДЕЛИЯ, состоят преим. из глинозёма (Аl2О3) и кремнезёма (SiO2), получаются обжигом при t 1250-1450°С (при высоком содержании глинозёма - до 1750°С), обеспечивающей превращения исходных минералов в новообразования. Различают А. о. и.: полукислые (до 28% Аl2О3, 65-85% SiO2), шамотные (28-45% Аl2О3) и высокоглинозёмистые (св. 45% Аl2О3).

Полукислые и шамотные А. о. и. изготовляют из глины или каолина, смешанных с измельчённым шамотом. В полукислые может добавляться кварц, обычно в виде песка. Шамотные А. о. и. на основе каолина наз. также каолиновыми, а содержащие более 70% шамота - многошамотными. Высокоглинозёмистые А. о. и. получают из горных пород, содержащих больше 45% Аl2О3, а также из искусств, материалов (технич. глинозёма, электрокорунда). Высокоглинозёмистые А. о. и. подразделяются на муллитокремнезёмистые (45-62% Аl2О3), муллито-вые (62-72% ), муллитокорундовые (72-90% ) и корундовые (св. 90% ).

Изготовляют А. о. и. прессованием полусухих (увлажнённых до 6-9% ) порошкообразных масс на механич. или гидравлич. прессах. Нек-рые виды изделии, преим. фасонные сложной конфигурации, формуют из пластичных масс с влажностью 17-22%. Обжигают изделия в пром. печах, большей частью туннельных непрерывного действия. Виды и размеры изделий различны: кирпичи простой формы, плиты, трубы, мелкие и крупные изделия сложной формы и др.

Свойства А. о. и. (см. таблицу) отличаются большим разнообразием в зависимости от используемого сырья и способов обработки и деталей стального литья; для получения огнеупора - термиткорунда.



Основные свойства алюмосиликатных огнеупорных изделий, наиболее распространённых в СССР



Показатели

Полукислые изделия

Шамотные изделия

Высокоглинозёмистые изделия



класс А

класс Б

класс А

класс Б

ВГО-62

ВГУ-62

ВГО-72



Огнеупорность, не ниже, °С

1710

1670

1730

1670

1800

1800

1800



Пористость кажущаяся, не выше, %

27

30

30

30

24

17

24



Предел прочности при сжатии, не ниже, Мн/м2

10

15

12,5

12,5

25

60

30



Шлакоустойчивость

умеренная

умеренная

хорошая

хорошая

хорошая

отличная

отличная



Термостойкост ь

хорошая

умеренная

хорошая

хорошая

хорошая

умеренная

хорошая



* 1 Мн/м2 ~ 10 кгс/смг.




А. открыта рус. учёным Н. Н. Бекетовым (1859), в пром-сти внепечной процесс освоен нем. химиком Г. Г