БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

АВСТРОМАРКСИЗМ, течение, сложившееся в начале 20 в.
ВЕЛИКОЕ ПЕРЕСЕЛЕНИЕ НАРОДОВ, условное название совокупности этнич. перемещений.
ОРГАНИЗАТОР (эмбриологич.), область зародыша хордовых животных.
ОРХОНО-ЕНИСЕЙСКИЕ НАДПИСИ, древнейшие письм. памятники тюрко-язычпых народов.
ВЕРЁВОЧНЫЙ МНОГОУГОЛЬНИК, графич. метод отыскания.
АГРОФИТОЦЕНОЗЫ (от агро..., греч. phyton - растение и koinos - общий).
ВОСПЛАМЕНИТЕЛЬНЫЕ СОСТАВЫ, смеси для воспламенения порохов.
ГАСТРОЦЕЛЬ (от гастро... и греч. koilia - пустота, полость).
ГЕОГРАФИЯ СЕЛЬСКОГО ХОЗЯЙСТВА, отрасль экономической географии.
ГЖЕЛЬСКАЯ КЕРАМИКА, изделия керамических предприятий.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

тельствовала о том, что эта планета обращается вокруг Солнца, а не Земли. На самом Солнце Галилей увидел пятна, разделив честь этого открытия с нем. астрономами К. Шейнером и И. Фабрициусом. И только тогда, когда гелиоцентрич. система мира получила столь блестящие подтверждения, католич. церковь приняла меры к её запрету, считая, что она подрывает авторитет Священного писания. Перед судом инквизиции Галилей был вынужден отречься от учения Коперника (1633). Само же сочинение Коперника было внесено в список (индекс) запрещённых книг (этот запрет официально был снят лишь 200 лет спустя).

Развитие небесной механики. Совре-менник Галилея И. Кеплер, будучи в Праге ассистентом Тихо Браге, после смерти последнего получил непревзойдённые по точности результаты наблюдений планет, проводившихся в течение более чем 20 лет. Особое внимание Кеплера привлёк Марс, в движении к-рого он обнаружил значительные отступления от всех прежних теорий. Ценой огромного труда и длит. вычислений ему удалось найти 3 закона движения планет, сыгравших важную роль в развитии небесной механики (т. н. Кеплера законы). 1-й закон, гласящий,что планеты движутся по эллипсам, в фокусе к-рых находится Солнце, разрушил тысячелетнее представление о том, что орбиты планет обязательно должны быть окружностями. 2-й закон определил переменную скорость движения планеты по орбите. 3-й закон установил математич. связь между размерами эллиптич. орбит и периодами обращения планет вокруг Солнца. Таблицы движения планет, составленные Кеплером на основании этих законов,намного превзошли по точности все прежние и оставались в употреблении в течение всего 17 в.

Дальнейший прогресс А. тесно связан с развитием математики и аналитич. механики, с одной стороны, и с успехами оптики и астрономич. приборостроения - с другой. Фундаментом небесной механики явился закон всемирного тяготения, открытый И. Ньютоном в 1685 (Ньютона закон тяготения). Следствием этого закона оказались и законы Кеплера, но лишь для того частного случая, когда планета движется под влиянием притяжения одного лишь центрального тела - Солнца. Выяснилось, что в реальном случае, при наличии взаимного притяжения между всеми телами Солнечной системы, движение планет сложнее, чем описываемое законами Кеплера, и если они всё же соблюдаются с хорошим приближением, то это результат сильного преобладания притяжения массивного Солнца над притяжением всех остальных планет. Гра-витац. сила, выражающаяся простой формулой в случае притяжения между двумя материальными точками, приводит к очень сложным математич. построениям в случае неск. точек или притяжения между телами, состоящими из многих материальных точек. Именно такими являются все тела Солнечной системы, да и все космич. тела вообще. Лишь благодаря трудам многих математиков, пре-жде всего Ньютона, затем Ж. Лагранжа, Л. Эйлера, П. Лапласа, К. Гаусса и ряда др., сложнейшая задача о движении, фигурах и вращении планет с их спутниками была решена с высокой точностью. Блестяще подтвердившееся предсказание англ. астрономом Э. Галлеем следующего появления кометы, носящей теперь его имя, и вычисление франц. учёным А. Клеро момента прохождения кометы через перигелий в 1759, открытие в 1846 Нептуна по вычислениям франц. астро-нома У. Леверье, обнаружение на основе вычислений невидимых спутников у нек-рых звёзд (у Сириуса и Проциона нем. астрономом Ф. Бесселем в 1844), впоследствии увиденных в большие телескопы, явились блестящими подтверждениями того, что движение небесных тел происходит в основном под действием гравитац. сил. Наиболее сложным является движение Луны вокруг Земли, но и его удалось представить с почти исчерпывающей точностью. Остававшиеся в движении Луны небольшие отклонения от теории, к-рые раньше приписывались какому-то негравитационному влиянию, в 20 в. объяснились ошибками в измерениях времени вследствие неравномерности вращения Земли. Т. о., небесная механика, пользуясь данными, доставляемыми астрометрией, оказалась в состоянии объяснить и предвычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике, и подготовить почву для труднейших экспериментов - запусков искусств. спутников Земли и космич. зондов.

Телескопические наблюдения. Усовершенствование телескопа шло сначала довольно медленно. По сравнению с трубой Галилея некоторым улучшением было предложение Кеплера заменить рассеивающую окулярную линзу собирающей, что расширило поле зрения и позволило применять более сильные увеличения. Этот простой окуляр был затем усовершенствован X. Гюйгенсом и применяется поныне. Однако вследствие хроматической и отчасти сферич. аберрации изображения продолжали оставаться расплывчатыми, с радужными каёмками, что заставляло для уменьшения их влияния увеличивать фокусные расстояния объективов (до 45 м), сохраняя сравнительно малые их диаметры, т. к. в то время не умели выплавлять большие блоки оптич. стекла. Но ис такими несовершенными инструментами был сделан ряд важных открытий. Так, Гюйгенс в 1655 разглядел кольца Сатурна (Галилею диск Сатурна казался удлинённым или "тройным"). Гюйгенс открыл наиболее яркий спутник Сатурна, Дж. Кассини обнаружил ещё 4 других, более слабых спутника. Он же в 1675 заметил, что кольцо состоит из двух концентрич.частей, разделённых тёмной полоской -"щелью Кассини". В 1675 О. Рёмер по наблюдениям затмений спутников Юпитера открыл конечность скорости света и измерил её.

Дальнейшее усовершенствование оптич. инструментов пошло по другому пути. Ошибочно считая, что дисперсия света пропорциональна преломлению, Ньютон пришёл к заключению, что невозможно сделать объектив ахроматическим. Это явилось толчком к созданию рефлекторов, в которых изображение строится вогнутым зеркалом, принципиально лишённым хроматизма. Постепенное совершенствование искусства шлифовки зеркал, сделанных из сплава олова с медью, позволило делать рефлекторы всё больших размеров, допускающих очень сильные увеличения. Так, в 1789 В. Гершель (Англия) довёл диаметр зеркала до 122 см. Однако начиная с сер. 18 в. рефракторы также получили существенное усовершенствование. В это время были созданы стёкла с большой дисперсией (флинтглас), и объективы стали делать двойными, сочетая 2 сорта стекла. Наряду со значит. уменьшением хроматизма такие объективы были свободны и от сферич. аберрации, что позволило во много раз сократить длину трубы, повысить проницающую силу инструментов и получать чёткое изображение без радужных каёмок.

При помощи новых инструментов искусные наблюдатели сделали много открытий, причём относящихся не только к телам Солнечной системы (таких, как открытие М. В. Ломоносовым в 1761 атмосферы у Венеры и исследование комет), но и к миру слабых и далёких звёзд. Так, были обнаружены многочисл. звёздные скопления и туманности (считавшиеся в то время также скоплениями, в к-рых из-за их удалённости не видны отдельные звёзды). Первые каталоги таких объектов были составлены во Франции Ш. Мессье (в 1771 и 1781); введённые им обозначения употребляют и поныне. В результате обширных систе-матич. наблюдений В. Гершель обосновал ограниченность звёздной системы в пространстве и укрепил т. о. предположения И. Ламберта (1761) о существовании многих звёздных систем, из к-рых та, где находится Солнце, ограничивается Млечным Путём. Лишь в 20 в. эта теория "островной Вселенной" получила подтверждение и дальнейшую разработку.

Роль телескопа в А. далеко не исчерпывается такими открытиями. Может быть ещё важнее применение телескопа к точным угловым измерениям. У. Гаскойн в Англии (1640) поместил в фокусе телескопа нити, к-рые видны на фоне наблюдаемого объекта, и этим повысил точность визирования во много десятков раз. Им же был изобретён первый окулярный микрометр для измерений малых угловых расстояний между деталями изображения, одновременно видимыми в поле зрения телескопа. Ж. Пикар во Франции (1667) снабдил телескоп разделёнными кругами, по к-рым отсчитывались углы с точностью до секунды дуги; это определило и соответствующую точность измерений сферич. координат звёзд, без чего не был бы возможен дальнейший прогресс в области астрометрии и звёздной А. Применив такой инструмент в работах по триангуляции во Франции, Пикар получил новые, более точные размеры земного шара, используя которые Ньютон открыл закон всемирного тяготения. Изме-ряя взаимные положения компоненто-двойных звёзд с помощью окулярного микрометра, В. Гершель (1803) установил, что многие из них представляют собой физически связанные взаимным тяготением системы, состоящие из двух (а иногда и больше) звёзд, обращающихся вокруг общего центра масс по законам Кеплера. Этим была доказана действительная универсальность тяготения, действующего во всех местах Вселенной. Сравнивая свои телескопич. определения координат звёзд со старыми греческими (Гиппарх, Тимохарис), Галлей обнаружил в 1718, что 3 яркие звезды - Альдебаран, Сириус и Арк-тур - изменили своё положение настолько, что это нельзя было объяснить ошибками старых наблюдений. Так были открыты собственные движения звёзд. К 1783 число звёзд с известным собственным движением возросло до 12; исследуя их, В. Гершель пришёл к заключению, что часть собственного движения каждой звезды является отражением движения Солнечной системы в пространстве и определил направление этого движения (в сторону созвездия Геркулеса). Всё это помогло начать изучение распределения и движения звёзд в системе Млечного Пути, получившей впоследствии название Галактики. Телескопические же наблюдения привели английского астронома Дж. Брадлея в 1725 к открытию явления аберрации света, которое он правильно объяснил конечной скоростью света, а в 1748 - к открытию нутации земной оси.

Одной из фундаментальных и трудных задач А. во все времена было определение астрономической единицы - среднего расстояния Земли от Солнца, к-рое является основной единицей измерений всех расстояний во Вселенной. Были проведены многие попытки решить проблему, но все они, по мере совершенствования методики и техники наблюдений, приводили всё к большим и большим значениям этой единицы. Первые близкие к истине результаты были получены методом, предложенным Галлеем,- наблюдением из разных точек Земли прохождений Венеры по диску Солнца в 1761, 1769, 1874 и 1882 и определением таким путём параллакса Солнца (последний, при известных размерах Земли, даёт возможность вычислить астрономическую единицу). Для наблюдений этих прохождений снаряжались многочисленные экспедиции. Первое из них было видимо на С. Европы и в Сибири. От Петербургской АН его наблюдал С. Я. Румов-ский в Селенгинске за Байкалом. Обработка всех наблюдений привела к значениям параллакса Солнца от 8,5" до 10,5". Прохождение в 1769 Румовский наблюдал в Коле, а И. И. Исленьев в Якутске. Однако возлагавшиеся надежды на точность определения параллакса Солнца не сбылись, и после открытия в 1801 малых планет, среди к-рых имеются весьма близко подходящие к Земле, появилась другая возможность определения этой важной астрономич. постоянной. В итоге всех определений, выполненных в 19 в., для параллакса Солнца было принято значение 8,80", что соответствует значению астрономич. единицы 149 500 000 км. В 60-х гг. 20 в., на основании радиолокационных измерений, для астрономич. единицы принято значение 149,600 млн. км.

Фундаментальное значение имели пер-вые определения расстояний до звёзд измерением годичных параллаксов. По мере совершенствования телескопических наблюдений становилось ясным, что параллаксы, представляющие собой перспективные смещения звёзд, вызванные годовым движением Земли вокруг Солнца, чрезвычайно малы. Попытки обнаружить эти смещения, начатые вскоре после гениального открытия Коперника и приведшие к ряду неожиданных открытий - аберрации света, физ. двойных звёзд, невидимых спутников звёзд,- долгое время оставались безуспешными. Ко времени В. Гершеля выяснилось, что параллаксы даже наиболее близких звёзд не превышают 1", а такие углы и не могли быть измерены инструментами того времени. Лишь В. Я. Струве в 1837 в Дерпте и Ф. Бесселю в 1838 в Кенигсберге удалось впервые уверенно измерить параллаксы соответственно звезды Веги и 61 Лебедя. Т. о., был впервые определён правильный масштаб расстояний во Вселенной. Работы Струве и Бесселя были основаны на визуальных телескопич. наблюдениях. С нач. 20 в. измерения звёздных параллаксов стали производить исключительно астрофотографич. методами. Найденная впоследствии самая близкая к нам звезда имеет параллакс 0,76", что соответствует расстоянию в 1,3 парсека (4,3 световых года).

Важным направлением А. явилось составление звёздных каталогов, содержащих точнейшие координаты звёзд. Их значение настолько велико, что они были названы фундаментом А. Они нужны как для науч. целей, в частности для определения астрономич. постоянных и исследования движений во Вселенной, так и для прикладных целей - геодезии, картографии, геогр. исследований, мореплавания, космонавтики. В этой области особенно большие заслуги имеют обсерватории: Гринвичская (основана в 1675), Пулковская (1839), Вашингтонская (1842) и обсерватория в Кейптауне в Юж. Африке (1820).

В конце 18 в. сведения о Солнечной системе пополнились благодаря открытию в 1781 планеты Уран. Изучение закономерностей его движения привело в 1846 к открытию Нептуна, а в 1930 была открыта самая удалённая от Солнца плане-та Плутон. В 1801 была обнаружена первая малая планета; в наст. время (кон. 60-х гг. 20 в.) известно уже более 1700 тел этого типа. Нек-рые из них представляют большой интерес характером своего движения (напр., т. н. Троянцы), другие - малостью расстояния, на к-рое они могут приближаться к Земле.

Развитие астрофизики. До середины 18 в. из разделов А., составляющих современную астрофизику, лишь фотометрия, первоначально ограничивавшаяся глазомерными оценками блеска звёзд, получила экспериментальную разработку в трудах франц. учёного П. Бугера (1729) и теоретич. обоснование в исследованиях нем. учёного И. Ламберта (1760). Тогда же было окончательно доказано, что-Солнце есть звезда, отличающаяся от других звёзд лишь близостью к нам, и что если его удалить на расстояния звёзд, то оно ничем не будет от них отличаться. Изучение количества звёзд разных звёздных величин позволило-В. Я. Струве в 1847 обосновать существование поглощения света в межзвёздномпространстве - явления, окончательно подтверждённого в 1930 амер. астрономом Р. Трамплером.

Огромные и всё увеличивающиеся возможности исследования физ. природы и хим. состава звёзд были получены благодаря изобретению спектрального анализа (Р. Бунзен и Г. Кирхгоф, 1859). Пионерами применения этого метода к Солнцу, звёздам и туманностям были У. Хёггинс и Дж. Локьер в Англии, А. Секки в Италии, Ж. Жансен во Франции. Чеш. физик К. Доплер сформулировал в 1842 свой знаменитый принцип (Доплера эффект), уточнённый А. Физо в 1848 и экспериментально проверенный А. А. Белопольским на лабораторной установке в 1900. Принцип Доплера получил многочисленные применения в А. для измерений движения по лучу зрения и вращения звёзд, турбулентных движений в солнечной фотосфере и пр., а затем и в самых разнообразных областях физики. Спектральный анализ позволил углубить исследования переменных звёзд, изучение к-рых началось ещё в кон. 18 в., а также обнаружить множество спектрально-двойных звёзд, компоненты к-рых сто