БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

АВСТРОМАРКСИЗМ, течение, сложившееся в начале 20 в.
ВЕЛИКОЕ ПЕРЕСЕЛЕНИЕ НАРОДОВ, условное название совокупности этнич. перемещений.
ОРГАНИЗАТОР (эмбриологич.), область зародыша хордовых животных.
ОРХОНО-ЕНИСЕЙСКИЕ НАДПИСИ, древнейшие письм. памятники тюрко-язычпых народов.
ВЕРЁВОЧНЫЙ МНОГОУГОЛЬНИК, графич. метод отыскания.
АГРОФИТОЦЕНОЗЫ (от агро..., греч. phyton - растение и koinos - общий).
ВОСПЛАМЕНИТЕЛЬНЫЕ СОСТАВЫ, смеси для воспламенения порохов.
ГАСТРОЦЕЛЬ (от гастро... и греч. koilia - пустота, полость).
ГЕОГРАФИЯ СЕЛЬСКОГО ХОЗЯЙСТВА, отрасль экономической географии.
ГЖЕЛЬСКАЯ КЕРАМИКА, изделия керамических предприятий.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

офорты, иллюстрации). Г. всё больше увлекался символикой и стилизацией в духе "модерна". Эти тенденции сказались особенно в циклах росписей (в надгробной капелле в Пори, 1901-03, в фин. павильоне на Всемирной выставке в Париже, 1900). Одновременно Г. создавал реалистич. пейзажи (Иматра зимой, 1893, Атенеум), портреты (М. Горького, 1906, Атенеум), иллюстрации (к роману Семеро братьев А. Киви, 1906-07); в 1920-х гг. им выполнен живописный цикл, посвящённый Вост. Африке.

Лит.: Безрукова М., Аксель Галлен-Каллела, Искусство, 1965, №4; Wепnerstrom (Wеnnеrwirta) L., Akseli Gallen-Kallela, Porvoo, 1914; Оkkonen O., A. Gallen-Kallela, Porvoo, 1949.

ГАЛЛЕР, Xаллер (Haller) Альбрехт (16.10.1708, Берн,-12.12.1777, там же), швейцарский естествоиспытатель и поэт. Учился в Тюбингенском, затем в Лейденском ун-те. С 1727 доктор медицины; в 1736-53 проф. Гёттингенского ун-та, где основал анатомич. театр и ботанич. сад; в 1751 создал в Гёттингене Королевское об-во наук, был избран его президентом. С 1753 снова в Берне. Предложил свою систему растений, осн. на строении плода и внешнем виде растений. Изучая эмбриогенез цыплёнка, пытался обосновать теорию преформации. В области физиологии экспериментально установил свойства мышечных волокон: упругость, способность реагировать сокращением при раздражении соответствующего нерва, а также и самих мышц. Внёс ряд дополнений к учению У. Гарвея, уточнив связь различных звеньев системы кровообращения.

Как поэт Г. сыграл известную роль в истории швейц.-нем. лит-ры, будучи представителем раннего Просвещения. Поэма Альпы (1729, изд. 1732) написана в жанре описательно-дидактич. ландшафтной поэзии. В ней Г. выражает сочувствие простому труженику-крестьянину. Сб. "Швейцарские стихи" (1732) окрашен в сентиментальные тона. В романах "Узонг" (1771), "Альфред, король англо-саксов" (1773), "Фабий и Катон" (1774) подвергаются рассмотрению разные формы гос. строя. Его философская поэма "О происхождении зла" (1734) переведена на рус. язык (1786) Н. М. Карамзиным.

Соч.: Elementa physiologiae corporis humani, v. 1-8, Lausanne, 1757 - 66; Biblio-theca chirurgica, Basel, 1774-75; Bibliotheca botanica, Z., 1771 - 72; Bibliotheca anatomi-ca, Z., 1774 - 77; Gedichte..., Lpz., 1923; Schriften zur Literatur, В., 1959.

Лит.: Историянемецкойлитературы, т. 2, М., 1963, с. 64-67: Festschrift zum Andenken an Albert von Haller dargebracht, Bern, 1877 (данполныйпереченьтрудовГ.);

Frey A., Albrecht von Halters Staatsroma-ne, Freiburg, 1928 (Diss.); Beer R. R., Der grosse Haller, Sackingen, 1947.

ГАЛЛЕР Лев Михайлович [17(29).Н. 1883-12.7. 1950], сов. военачальник, адмирал (1940). Чл. КПСС с 1932. Род. в Петербурге в семье воен. инженера. Окончил Мор. кадетский корпус (1905) и офицерский арт. класс (1912). В период 1-й мировой войны был флагманским артиллеристом бригады линкоров Балт. флота и ст. офицером линкора Слава (капитан 2-го ранга). Во время Окт. революции, будучи командиром эсминца, перешёл на сторону Сов. власти, участвовал в Ледовом походе Балт. флота 1918. В ходе Гражд. войны командовал эсминцем, крейсером, был нач. штаба отряда действующих судов Балт. моря. В 1919, командуя линкором Андрей Первозванный, участвовал в операциях против войск Юденича и англ, интервентов. В 1921 нач. минной дивизии, затем нач. штаба Балт. флота. Окончил курсы высшего начсостава при Воен.-мор. академии (1926) и с 1927 командовал бригадой линкоров Балт. флота. В 1932-37 командующий Балт. флотом. С 1937 зам. нач. морских сил Наркомата обороны СССР, с 1938 - нач. Гл. мор. штаба, с 1940 зам. наркома ВМФ по кораблестроению и вооружению. В 1947-48 нач. Воен.-мор. академии кораблестроения и вооружения им. А. Н. Крылова. Награждён 3 орденами Ленина, 4 орденами Красного Знамени, 2 орденами Ушакова 1-й степени, орденом Красной Звезды и медалями.

ГАЛЛЕЯ КОМЕТА, яркая комета, первая, для к-рой была вычислена эллиптич. орбита и тем самым доказана периодичность её возвращения к Солнцу. Англ, астроном Э. Галлей, составивший первый каталог элементов орбит комет, появлявшихся в 1337-1698, обратил внимание на совпадение путей комет 1531,1607 и 1682 гг. и предположил, что это - прохождения одной и той же кометы, обращающейся около Солнца с периодом 75- 76 лет. В 1705 Галлей предсказал возвращение кометы на 1758. К 1758 франц. учёный А. Клеро разработал метод учёта возмущений движения кометы притяжением планет Юпитера и Сатурна и уточнил дату прохождения кометы через перигелий. Оно произошло 12 марта 1759 - в пределах вероятного срока, указанного Клеро; это явилось блестящим подтверждением механики И. Ньютона. Перигелийное расстояние Г. к. составляет 0,587 астрономич. единицы, афелийное - более 35 астрономич. единиц. Следующее прохождение кометы состоялось в 1835. К этому времени в движении кометы были учтены возмущения и от Урана, незадолго перед тем открытого англ, астрономом В. Гершелем. Комета прошла перигелий 16 нояб., с опозданием всего на 3 дня против расчёта. Изучение Г. к. нем. астрономом В. Бесселем положило начало развитию механич. теории комет-ных форм, впоследствии продолженной рус. астрономом Ф. А. Бредихиным. Исследования Г. к. во время её последнего появления (перигелий 19 мая 1910), основанные на многочисл. наблюдениях, позволили получить первые сведения о физической природе комет и побудили Ф. Коуэлла разработать более совершенный метод расчёта возмущений от планет. Совместно с А. Кроммелином он проследил движение Г. к. не только в будущем, но и в прошлом. Оказалось, что до 1909 Г. к. наблюдалась 29 раз, причём впервые - в 446 до н. э. Ближайшее прохождение Г. к. через перигелий произойдёт в янв. 1986. Это будет один из наиболее удобных во 2-й пол. 20 в. случаев для посылки к кометам ракеты-зонда с целью прямого определения состава и состояния вещества в кометах.

Л. М. Галлер. Э. Галуа.

Лит.: Орлов С. В., О природе комет, М, 1958.

О.В.Добровольский.

ГАЛЛИ-БИББИЕНА (Galli Bibbiena; Galli Bibiena), семья итальянских театральных художников и архитекторов. Фердинандо Г. (18.8.1657, Болонья,-3.1.1743, там же), выдающийся мастер театр, декорации барокко. Работал в Парме, а также в др. гг. Италии, при дворах Вены и Барселоны. Отказавшись от симметрии декораций Возрождения, применял резкие смещения точек зрения, создававшие впечатляющие иллюзионистич. пространств, эффекты. По его проекту построен театр в Мантуе (1731; сохранился интерьер). Автор неск. теоретич. трактатов, в т. ч. Гражданская архитектура, основанная на геометрии и сведённая к перспективе (изд. в 1711). Франческо Г. (12.12.1659, Болонья,-20.1.1739, там же), брат Фердинандо, работавший гл. обр. в Италии (в т. ч. построил Театро филармонико в Вероне, 1729; в первоначальном виде не сохранился). Сыновья Фердинандо Г.: Алессандро Г. (1687, Парма,- до 1769), Джузеппе [5.1.1696, Парма,-1756 (1757?), Берлин], Антонио (16.1.1700, Парма,-1774, Милан, по др. источникам, Мантуя) и внук Фердинандо Г.- Карло Г. [1725 (1728У), Вена, -1787, Флоренция], работавшие в Италии, Германии и Австрии (сохранились: театр в Байрёйте, открытый в 1748; церковь иезуитов в Мангейме, 1733-60; Театро комунале в Болонье, 1756-63, неоднократно перестраивался), также были театр, художниками и архитекторами. Карло, возможно, в 1778 принимал участие в оформлении спектаклей в Петербурге. Джузеппе - автор трактата Архитектура и перспектива (изд. в 1740), к-рым широко пользовались декораторы 18 в.

Лит.: Haytt A., Mayor A., The Bibiena family, N. Y., 1945.

ГАЛЛИЕН, Публий Лициний Эгнаций Галлиен (Publius Licinius Egnatius Gallienus) (218-268), римский император с 253 (до 260 - соправитель своего отца Валериана). Г. провёл реформу конницы. Опираясь на гор. слои и армию, пытался ограничить роль сенаторов, отстранив их от высших воен. должностей. Это вызвало резкую оппозицию сената. Был убит близ Медиолана (совр. Милан) во время мятежа, возглавленного нач. конницы Авреолом.

Лит.: De Regibus Luca, La monarchia militare di Gallieno, Geneva, 1939; Manni E., L'impero di Gallieno, Roma, 1949.

ГАЛЛИЕНИ (Gallieni) Жозеф Симон (24. 4.1849, Сен-Беа, деп. Верх. Гаронна,- 27.5.1916, Версаль), маршал Франции (звание дано посмертно, 1921). Окончил училище Сен-Сир (1870), участвовал во франко-прус. войне 1870-71, затем служил на адм. постах в колониях (Африка, Индокитай), был ген.-губернатором Мадагаскара (1896-1905), затем командовал корпусом во Франции. С 1913 в отставке по возрасту. В авг. 1914 вернулся в армию и был назначен воен. губернатором Парижа. В сент. 1914 предложил нанести удар от Парижа во фланг нем. армиям и организовал переброску 6-й армии ген. Ж. Монури, наступление к-рой сыграло значит, роль в Марнском сражении 1914. В окт. 1915 - марте 1916 воен. министр.

ГАЛЛИЙ (лат. Gallium), Ga, химический элемент III группы периодич, системы Д. И. Менделеева, п. н. 31, ат. м. 69,72; серебристо-белый мягкий металл. Состоит из двух стабильных изотопов с массовыми числами 69 (60,5% ) и 71 (39,5% ).

Существование Г. ("экаалюминия") и осн. его свойства были предсказаны в 1870 Д. И. Менделеевым. Элемент был открыт спектральным анализом в пиренейской цинковой обманке и выделен в 1875 франц. химиком П. Э. Лекоком де Буабодраном; назван в честь Франции (лат. Gallia). Точное совпадение свойств Г. с предсказанными было первым триумфом периодич. системы.

Среднее содержание Г. в земной коре относительно высокое, 1,5*10-3% по массе, что равно содержанию свинца и молибдена. Г.- типичный рассеянный элемент. Единственный минерал Г.- галдит CuGaS2 очень редок. Геохимия Г. тесно связана с геохимией алюминия, что обусловлено сходством их физико-химич. свойств. Осн. часть Г. в литосфере заключена в минералах алюминия. Содержание Г. в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Г. наблюдаются также в сфалеритах (0,01-0,02% ), в каменных углях (вместе с германием), а также в нек-рых жел. рудах.

Физические и химические свойства. Г. имеет ромбич. (псевдотетрагональную) решётку с параметрами а = 4,5197А, b = 7,6601А, c = = 4,5257А. Плотн. (г/см3) твёрдого металла 5,904 (20°С), жидкого 6,095 (29,8°С), т. е. при затвердевании объём Г. увеличивается; tпл 29,8°C, tкип 2230°С. Отличит, особенность Г.- большой интервал жидкого состояния (2200°С) и низкое давление пара при темп-pax до 1100-1200°С. Удельная теплоёмкость твёрдого Г. 376,7 дж/(кг*К), т. е. 0,09 кал/(г*град) в интервале 0-24°С, жидкого соответственно 410 дж/(кг*К), то есть 0,098 кал/(г*град) в интервале 29 - 100°С. Удельное электрич. сопротивление (ом-см) твёрдого Г. 53,4*10-6 (0°С), жидкого 27,2*10-6 (30°С). Вязкость (пуаз = 0,1 н*сек/м2): 1,612 (98°С), 0,578 (1100°С), поверхностное натяжение 0,735 н/м (735 дин/см) (30 0С в атмосфере Н2). Коэффициенты отражения для длин волн 4360А и 5890А соответственно равны 75,6% и 71,3%. Сечение захвата тепловых нейтронов 2,71 барна (2,7* •10-28 м2).

На воздухе при обычной темп-ре Г. стоек. Выше 260° С в сухом кислороде наблюдается медленное окисление (плёнка окиси защищает металл). В серной и соляной к-тах Г. растворяется медленно, в плавиковой - быстро, в азотной к-те на холоду Г. устойчив. В горячих растворах щелочей Г. медленно растворяется. Хлор и бром реагируют с Г. на холоду, иод - при нагревании. Расплавленный Г. при темп-pax выше 300° С взаимодействует со всеми конструкционными металлами и сплавами.

Наиболее устойчивы трёхвалентные соединения Г., к-рые во многом близки по свойствам химич. соединениям алюминия. Кроме того, известны одно- и двухвалентные соединения. Высший окисел Gа2О3- вещество белого цвета, нерастворимое в воде. Соответствующая ему гидроокись осаждается из растворов солей Г. в виде белого студенистого осадка. Она имеет ярко выраженный амфотерный характер. При растворении в щелочах образуются галлаты (напр., Na[Ga(OH)4]), при растворении в кислотах-соли Г.: Gа2(SО4)3, GaCl3 и др. Кислотные свойства у гидроокиси Г. выражены сильнее, чем у гидроокиси алюминия [интервал выделения Аl(ОН)з лежит в пределах рН = 10,6-4,1, a Ga(OH)3 в пределах рН = 9,7-3,4].

В отличие от А1(ОН)з, гидроокись Г. растворяется не только в сильных щелочах, но и в растворах аммиака. При кипячении из аммиачного раствора вновь выпадает гидроокись Г.

Из солей Г. наибольшее значение имеют хлорид GaCl3 (tпл 78°C, tкип 200°C) и сульфат Ga2(SO4)3. Последний с сульфатами щелочных металлов и аммония образует двойные соли типа квасцов, напр. (NH4) Ga(SO4)2*12H2O. Г. образует малорастворимый в воде и разбавленных к-тах ферроцианид Ga4[Fe(CN)6]3, что может быть использовано для его отделения от Аl и ряда др. элементов.

Получение и применение. Осн. источник получения Г.- алюминиевое произ-во. Г. при переработке бокситов по способу Байера концентрируется в оборотных маточных растворах после выделения Аl(ОН)з. Из таких растворов Г. выделяют электролизом на ртутном катоде. Из щелочного раствора, полученного после обработки амальгамы водой, осаждают Ga(OH)3, к-рую растворяют в щёлочи и выделяют Г. электролизом.

При содово-известковом способе переработки бокситовой или нефелиновой руды Г. концентрируется в последних фракциях осадков, выделяемых в процессе карбонизации. Для дополнит, обогащения осадок гидроокисей обрабатывают известковым молоком. При этом большая часть А1 остаётся в осадке, а Г. переходит в раствор, из к-рого пропусканием СО2 выделяют галлиевый концентрат (6 - 8% Са2О3); последний растворяют в щёлочи и выделяют Г. электролитически.

Источником Г. может служить также остаточный анодный сплав процесса рафинирования А1 по методу трёхслойного электролиза. В произ-ве цинка источниками Г. являются возгоны(вельц-окислы), образующиеся при переработке хвостов выщелачивания цинковых огарков.

Полученный электролизом щелочного раствора жидкий Г., промытый водой и кислотами (НСl, HNO3), содержит 99,9-99,95% Ga. Более чистый металл получают плавкой в вакууме, зонной плавкой или вытягиванием монокристалла из расплава.

Широкого пром. применения Г. пока не имеет. Потенциально возможные масштабы попутного получения Г. в производстве алюминия до сих пор значительно превосходят спрос на металл. Наиболее перспективно применение Г. в виде хим. соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми свойствами. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях и др. приборах, где может быть использован фотоэффект в запирающем слое, а также в приёмниках инфракрасного излучения. Г. можно использовать для изготовления оптич. зеркал, отличающихся высокой отражательной способностью. Сплав алюминия с Г. предложен вместо ртути в качестве катода ламп ультрафиолетового излучения, применяемых в медицине. Жидкий Г. и его сплавы предложено использовать для изготовления высокотемпературных термометров (600- 1300°С) и манометров. Представляет интерес применение Г. и его сплавов в качестве жидкого теплоносителя в энер-гетич. ядерных реакторах (этому мешает активное взаимодействие Г. при рабочих температурах с конструкционными материалами; эвтектич. сплав Ga-Zn-Sn оказывает меньшее коррозионное действие, чем чистый Г.).

Лит.; Шека И. А., Чау с И. С., Митюрева Т. Т., Галлий, К., 1963; Ерёмин Н. И., Галлий, М., 1964; Зеликман А.