БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

АВСТРОМАРКСИЗМ, течение, сложившееся в начале 20 в.
ВЕЛИКОЕ ПЕРЕСЕЛЕНИЕ НАРОДОВ, условное название совокупности этнич. перемещений.
ОРГАНИЗАТОР (эмбриологич.), область зародыша хордовых животных.
ОРХОНО-ЕНИСЕЙСКИЕ НАДПИСИ, древнейшие письм. памятники тюрко-язычпых народов.
ВЕРЁВОЧНЫЙ МНОГОУГОЛЬНИК, графич. метод отыскания.
АГРОФИТОЦЕНОЗЫ (от агро..., греч. phyton - растение и koinos - общий).
ВОСПЛАМЕНИТЕЛЬНЫЕ СОСТАВЫ, смеси для воспламенения порохов.
ГАСТРОЦЕЛЬ (от гастро... и греч. koilia - пустота, полость).
ГЕОГРАФИЯ СЕЛЬСКОГО ХОЗЯЙСТВА, отрасль экономической географии.
ГЖЕЛЬСКАЯ КЕРАМИКА, изделия керамических предприятий.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

тельцах (эритроцитах) одного или нескольких аномальных (патологических) гемоглобинов. Выделено св. 50патологич. разновидностей гемоглобина, возникших в результате врождённого, передаваемого по наследству дефекта образования белковой части гемоглобина- глобина. При аномалиях гемоглобина нарушаются физ.-хим. свойства эритроцитов, обменные процессы в них; эритроциты становятся менее устойчивыми к различным гемолизирующим факторам (см. Гемолиз). Патологич. гемоглобины обозначаются заглавными буквами лат. алфавита от С до О. присоединяемыми к символу гемоглобина - Нb. При передаче Г. от одного из родителей (гетерозиготный тип наследования) носители пато-логич. гемоглобина могут быть практически здоровыми людьми; при передаче Г. от обоих родителей (гомозиготный тип наследования) у детей возникает картина тяжёлого гемолиза. Г. преимущественно поражают население тропич. и субтропич. областей (Экваториальная Африка, Аравийский п-оп, Юж. Индия, Юж. Китай, Средиземноморье и др.). В СССР Г. обнаруживаются в Азербайджане, Грузии. Наиболее распространены и отличаются тяжестью проявлений серповид-ноклеточная (дрепаноцитарная) анемия и талассемия. Серповиднокле-точная анемия (HbS) связана с наличием в эритроцитах патологич. гемоглобина S (первая буква англ, sicle - серп). При этой форме Г. эритроциты в условиях снижения парциального давления кислорода в окружающей среде приобретают форму серпа. При увеличении в крови количества серповидных эритроцитов нарастает вязкость крови, замедляется кровоток, происходит разрушение серповидных эритроцитов, развиваются тромбозы в различных органах. У практически здоровых носителей HbS серповидность эритроцитов и появление признаков заболевания могут наступить лишь в условиях гипоксии. Поэтому всем носителям HbS противопоказаны служба в авиации, а также полёты на самолётах без достаточного кислородного обеспечения. Талассемия - заболевание, распространённое в средиземноморских странах. Характеризуется значительным повышением содержания HbF в крови. Полагают, что при этом образование нормального гемоглобина НbА подавлено. Нарушено также образование железосодержащей части гемоглобина (гема). Различают большую, малую и минимальную талассемию. При гетерозиготном наследовании развиваются малая, или минимальная, талассемия, при гомо-зиготном - большая. Для всех форм та-лассемии характерно наличие в крови "мишеневидных" эритроцитов, в к-рых гемоглобин расположен в центре клетки в виде мишени. Признаки серповидноклеточной анемии и талассемии (задержка общего развития, анемия, желтушность, увеличение печени, селезёнки, изменения костей скелета) появляются с раннего детства. Осложнением серповидноклеточ-ной анемии являются тромбозы сосудов кишечника, пигментные камни в жёлчных путях. Лечение: при развитии анемии - переливание крови, витамины. При талассемии незначит. улучшение достигается удалением селезёнки. Иногда в группу Г. включают овалоклеточ-ную анемию. Кроме указанных форм Г., имеют распространение и др. аномалии гемоглобина (HbC, HbD, HbE). Знакомство с распространённостью Г. и выявление их носителей имеют определённое значение для профилактики Г. Лит.: Кассирский И. А. иАлек-сеев Г. А., Клиническая гематология, 4 изд., М., 1970; Генетика в гематологии, под ред. И. А. Кассирского, Л., 1967. А. М. Полянская.

ГЕМОГЛОБИНОФИЛЬНЫЕ БАКТЕРИИ, бактерии рода Haemophilus, для жизни к-рых необходимо присутствие в среде сходного с гемоглобином вещества (фактора X); неподвижные палочки (дл. 1-1,5 мк), не образующие спор. Род Haemophilus объединяет возбудителей инфлюэнцы (бактериального гриппа), инфлюэнцы свиней, мягкого шанкра и др. Отд. виды бактерий др. родов (напр., возбудитель коклюша) также лучше растут в присутствии фактора X.

ГЕМОГЛОБИНУРИЯ (от гемоглобин и греч. uron - моча), появление гемоглобина в моче. Обычно возникает вследствие внутрисосудистого распада эритроцитов после переливания несовместимой крови, воздействия нек-рых химич. и биол. ядов, лекарств, веществ, при непереносимости их, ряда возбудителей инфекции, при обширных травмах и др.

ГЕМОГРЕГАРИНЫ (Haemogregarinidae), семейство паразитич. простейших отр. Adeleida класса споровиков. 4 рода: Klossiella, Hepatozoon, Haemogregarina, Karyolysus. Паразитируют в организме млекопитающих, пресмыкающихся, земноводных, рыб. Бесполое размножение (шизогония) протекает в эритроцитах (у Haemogregarina), в эндотелии кровеносных сосудов (у Klossiella, Karyolysus) или во внутр. органах позвоночных (у Hepatozoon). Половой процесс и спорогония протекают в организме животного-переносчика (пиявки, насекомые, клещи).

ГЕМОДИАЛИЗ (от гемо... и греч. dialysis - разложение, отделение), метод вне-почечного очищения крови при острой и хронич. почечной недостаточности. Во время Г. происходит удаление из организма токсич. продуктов обмена веществ, нормализация нарушений водного и электролитного балансов. Г. осуществляют обменным переливанием крови (одновременное массивное кровопускание с переливанием такого же количества донорской крови), обмыванием брюшины солевым раствором (перитонеальный диализ), промыванием слизистой оболочки кишечника умеренно гипертонич. растворами (кишечный диализ). Наиболее эффективным методом Г. является применение аппарата искусственная почка. А. П. Ржанович.

ГЕМОДИНАМИКА (от гемо... и динамика), движение крови по сосудам, возникающее вследствие разности гидроста-тич. давления в различных участках сосудистой системы. Разность давлений обеспечивается нагнетательной функцией сердца, выбрасывающего в сосудистую систему при каждом сокращении у человека 60-70 мл крови, что составляет в состоянии покоя 4,5-5 л/мин. Эта величина - минутный объём сердца, или сердечный выброс,- важнейший показатель функции сердечно-сосудистой системы; во время мышечной работы она может достигать 20-25 л/мин. Кровь выбрасывается в замкнутую сосудистую систему, оказывающую сопротивление движению крови вследствие трения крови о сосудистую стенку и вязкости самой крови. При детальном математич. моделировании движения крови она рассматривается как взвесь форменных элементов, т. е. неньютоновская жидкость, а кровеносные сосуды - как вязко-эластичные трубки, свойства к-рых (геометрические - размеры, ветвления, и физические - вязкость, упругость, проницаемость) меняются по длине. В первом приближении трение крови о стенку сосуда зависит от размера сосуда, т. е. от его диаметра и длины. Сопротивление сосуда движению крови может быть выражено Пуазёйля законом. Рис. 1. Схема последовательного (а) и параллельного (б) соединения кровеносных сосудов. Сосудистая система - серия трубок различной длины и диаметра, соединённых как последовательно, так и параллельно. При последовательном соединении (рис. 1, а) величина суммарного сопротивления равна сумме сопротивлений отд. сосудов: При параллельном соединении (рис. 1, б) суммарное сопротивление выражается уравнением: Наибольшим сопротивлением обладают концевые участки артерий - артериолы. Это создаёт препятствие для оттока крови из артериальной системы и приводит к созданию т. н. артериального давления (см. Кровяное давление). Его уровень (Р) пропорционален величине сосудистого сопротивления (R) и количеству крови, выбрасываемому сердцем в сосудистую систему в единицу времени т. е. отсюда Эта формула применима для всей сер-дечно-сосудисгой системы в целом в случае, если давление в начале этой системы (т. е. в артериях) равно Р, а в конце системы (т. е. в устье полых вен) равно нулю. Если последнее не равно нулю, то уравнение приобретает несколько иной вид: (где P1 и Р2 - давление соответственно в начале и в конце сосудистой системы). Это осн. уравнение Г., пользуясь к-рым можно определить сосудистое, или т. н. периферическое, сопротивление, если известны давления P1 и Р3 и минутный объём сердца (Q). Величина периферич. сопротивления в основном определяется тонусом арте-риол, т. е. степенью постоянного сокращения гладкой мускулатуры стенок этих сосудов. Изменение тонуса артериол регулирует уровень артериального давления в организме. Оно вызывает изменение просвета артериол и сопротивления сосудов и т. о. регулирует величину кровотока через отдельные сосудистые области, приводя его в соответствие с интенсивностью жизнедеятельности ткани, т. е. с её потребностью в кислороде и питательных веществах (в интенсивно работающих тканях, напр, в сокращающейся мышце, кровоток может увеличиваться в 100 и более раз, причём величина общего артериального давления и минутный объём сердца могут существенно не изменяться ). Количество крови, протекающее через все участки сосудистой системы в единицу времени, одинаково. Линейная скорость движения крови обратно пропорциональна величине суммарного просвета данного отдела сосудистого русла. Средняя линейная скорость кровотока в аорте человека достигает 50 см/сек, в капиллярах она равна 0,5 мм/сек, a s полых венах - 20 см/сек. Кровоток в аорте и крупных артериях прерывистый (пульсирующий), увеличивается при систоле (сокращении) сердца и падает почти до нуля во время диастолы (расслабления) сердца. Взаимоотношения между суммарным просветом различных участков сосудистого русла, уровнем кровяного давления в них и скоростью кровотока представлены на рис. 2. Благодаря упругости артериальных стенок артериолы при систоле растягиваются, вмещая дополнительное количество крови, а при диастоле спадаются, способствуя проталкиванию крови в капилляры. Это обеспечивает непрерывный ток крови в капиллярах, что важно для обмена веществ между кровью и тканями. Рис. 2. Изменение скорости кровотока (1), просвета сосудов (2) и кровяного давления (3) в разных отделах сосудистого русла. Лит.: Чижевский А. Л., Структурный анализ движущейся крови, М., 1959; Савицкий Н. Н., Биофизические основы кровообращения и клинические методы изучения гемодинамики, 2 изд., Л., 1963; Физиология человека, М., 1966; Гайтон А., Физиология кровообращения. Минутный объем сердца и его регуляция, [пер. с англ.], М., 1969; Handbook of physiology, v. 1-3, Wash., 1962-65. Г. И. Косицкий.

ГЕМОЛИЗ (от гемо... и греч. lysis - распад, растворение), гематолизис, эритроцитолиз, процесс разрушения эритроцитов с выделением из них в окружающую среду гемоглобина. Физиологический Г., завершающий жизненный цикл эритроцитов (ок. 120 дней), происходит в организме человека и животных непрерывно. В физиологических условиях ежедневно Г. подвергается 0,8% всей массы эритроцитов, обычно "стареющих". Окончательный распад "стареющих" эритроцитов происходит преим. в селезёнке. При распаде эритроцитов из освободившегося гемоглобина путём сложных превращений образуется один из пигментов жёлчи -били-рубин, по количеству к-рого в крови и его производных в кале и моче можно судить о выраженности Г. Освобождённое в процессе распада гемоглобина железо депонируется в ретикулоэндртелиальных клетках печени и селезёнки. После сложных превращений железо связывается с (3-глобулиновой фракцией белка крови и участвует в выработке нового гемоглобина. Отклонение в балансе между литическим агентом и ингибитором может привести к преобладанию процесса кроверазрушения над кровеобразованием, т. е. к патологич. Г. Патологич. Г. наблюдается при гемолитич. анемиях, гемоглобинопатиях, под влиянием гемолитич. ядов (токсины нек-рых бактерий, свинец, мышьяк, нитробензол, яд сморчков и др.), вследствие образования аутоиммунных и изоэритроцитарных антител при переливании несовместимой крови, при резусном конфликте (см. Геополитическая болезнь новорождённых), воздействии нек-рых хим. агентов, холода; у чувствительных лиц - при приёме нек-рых лекарств, веществ, вдыхании пыльцы нек-рых растений и др. При патологич. Г. разрушение эритроцитов происходит во всех клетках ретикулоэндотелиальной системы (печень, костный мозг, лимфатич. узлы и др.), а также может наблюдаться в сосудистом русле. В этом случае большая часть гемоглобина разрушенных эритроцитов связывается со специфич. белком - гаптоглобином, а избыток, проходя через почечный фильтр, обнаруживается в моче - гемоглобинурия. Распад сразу большой массы эритроцитов (напр., при гемолитич. анемиях) сопровождается тяжёлым состоянием организма (г емолитический шок) и может привести к смерти. Г. может возникнуть в долго хранящейся консервированной крови, что делает её непригодной для обычных переливаний. А. М. Полянская.

ГЕМОЛИЗИНЫ, вещества, способные освобождать гемоглобин из эритроцитов крови; при этом гемоглобин растворяется в плазме или окружающей жидкости и кровь (или взвесь эритроцитов) становится прозрачной (лаковая кровь). Г.- продукты жизнедеятельности мн. бактерий (стафилококков, стрептококков и др.), паразитич. червей, насекомых, скорпионов, нек-рых ядовитых змей (лизолецитины). Г. могут присутствовать в сыворотке крови (нормальные Г.) и лизировать собств. эритроциты (а у т о г е м о л и з); однако чаще они появляются после внутривенного введения эритроцитов, полученных от животных того же вида (изолизины) или др. вида (г е т е р о л и з и н ы). Гемолитич. свойства сывороток теряются при нагревании до 56оС в течение 30 мин, что зависит от присутствия в них комплемента, необходимого для действия гетеролизинов крови на эритроциты. X. X. Планелъес.

ГЕМОЛИМФА (от гемо... и лимфа), жидкость, циркулирующая в сосудах и межклеточных полостях мн. беспозвоночных (членистоногих, моллюсков), имеющих незамкнутую систему кровообращения. Она выполняет те же функции, что кровь и лимфа у животных с замкнутой кровеносной системой (нек-рые черви, позвоночные): осуществляет транспорт кислорода и углекислого газа, питательных веществ и продуктов выделения. Г. богата органич. веществами, в т. ч. белками, часто содержит дыхательные пигменты (гемоцианин и гемоглобин). В состав Г. входят также клеточные элементы, различающиеся по строению и функции (фагоциты, экскреторные клетки, в нек-рых случаях - эритроциты).

ГЕМОЛИТИЧЕСКАЯ БОЛЕЗНЬ НОВОРОЖДЁННЫХ, эритробластоз плода (эритробласты - молодые формы эритроцитов), заболевание, проявляющееся с момента рождения или с первых часов жизни ребёнка, чаще всего при несовместимости крови матери и плода по резус-фактору. Проявляется Г. б. н. в отёчной форме (наиболее тяжёлая), в желтушной форме и в форме врождённой анемии. Наиболее часто встречается желтушная форма. Желтуха, заканчивающаяся нередко смертельным исходом, известна давно, однако причина Г. б. н. была установлена только в 1937-40, когда австр. врач К. Ландштейнер и амер. врач А. Винер обнаружили у 85% людей в эритроцитах особое вещество, имеющееся также у всех обезьян породы резус и названное поэтому резус-фактором.

Если у женщины, в крови к-рой не содержится резус-фактора (резус-отрицательной), наступает беременность от резус-положительного супруга и плод унаследует резус-положительную кровь отца, то в крови матери постепенно нарастает содержание резус-антител. Проникая через плаценту в кровь плода, эти антитела разрушают эритроциты плода, а затем и эритроциты новорождённого. Г. б. н. может развиться и при групповой несовместимости крови супругов (см. Группы крови), когда ребёнок наследует группу крови отца; обычно в этих случаях у матери группа 1(О), а у ребёнка П(А) или Ш(В). При несовместимости крови матери и ребёнка по резус-фактору Г. б. н. обычно наблюдается у детей, родившихся от 2-3-й и последующих беременностей, т. к. содержание резус-антител в организме матери нарастает медленно. Однако заболевание мо