| я на теплоходах, тепловозах, автомобилях, самолётах, в станках и машинах-орудиях, в приводах строительно-дорожных машин, компрессоров, вентиляторов, насосов и др. По принципу действия Г. п. разделяются на 2 осн. группы: объёмные и гидродинамические. В зависимости от назначения различают Г. п. для преобразования или передачи механич. энергии (гидросиловые передачи) и для преобразования движения с целью автоматизации управления. Г. п. может быть объединена с зубчатой передачей так, что движение будет передаваться от ведущего вала либо гидропередачей, либо зубчатой передачей, либо обеими одновременно. Такие Г. п., называемые гидромеханическими, передают большие мощности и достигают больших, чем это возможно в обычных Г. п., пределов регулирования.
Г. п. обладает гибкостью и износоустойчивостью, она легко регулируется, предохраняет механизмы от перегрузки и поэтому применяется во мн. современных машинах (см. Гидропривод машин).
ГИДРАВЛИЧЕСКАЯ ТУРБИНА, см. Гидротурбина.
ГИДРАВЛИЧЕСКИЕ ЖИДКОСТИ, жидкости, применяемые в машинах и механизмах для передачи усилий (см. Гидравлическая передача. Гидравлический двигатель, Гидродинамическая передача и Гидропередача объёмная). Г.ж. должны обладать высокой стабильностью против окисления, малой вспениваемо-стью, инертностью к материалам деталей гидросистемы, пологой кривой вязкости, низкой темп-рой застывания и высокой темп-рой вспышки. Нефтехимическая промышленность выпускает более 20 сортов минеральных масел, используемых в гидравлических системах (см. табл.).
Свойства некоторых гидравлических жидкостей
Жидкости
Вязкость при 50°С,
м2/сек
tзаст, 0С
t всп0С
Масло гидравлич. для автоматич. линий металлорежущих станков
(25-35)*10-6
-10
190
Масло для прессов
1*10-7*
-15
200
Масло для гидравлич. передач тепловозов ГТ - 50
(11-14)*10-6
-28
165
Масло для гидросистем автомобилей:
гидромеханич. трансмиссий
(3,5-4)*10-6*
-45
160
гидротрансформаторов и автоматич. коробок
(23-30)*10-6
-40
175
гидроусилителя руля
(12-14)*10-6
-45
163
Масло для высоконагруженных механизмов (ЭШ)
20*10-6
-50
150
Жидкость амортизаторная (АЖ-12T)
12*10-6
-55
165
Жидкость гидротормозная (масло ГТН)
1*10-7
-63
92
Спирто-глицериновые жидкости:
СГ
6,2*10-6
-50
28
СВГ
2,5*10-6
-60
28
СВГ-2
7,5*10-6
-50
30
Слирто-касторовые жидкости:
ЭСК
(8,2-8,6)*10-6
-25
12
БСК
(9, 6-13, S)*10-6
-25
14
* При 100°С.
В ряде случаев в качестве Г.ж. применяют нек-рые индустриальные и моторные масла. Большинство Г. ж. содержит антиокислительные, антипенные и др. присадки.
Лит.: Нефтепродукты. Справочник, под ред. Б. В. Лосикова, M., 1966; Моторные и реактивные масла и жидкости, под ред.. К. К. Папок и E. Г. Семенидо, 4 изд., [M., 1964]. H. Г. Пучков.
ГИДРАВЛИЧЕСКИЙ ДВИГАТЕЛЬ, машина, преобразующая энергию потока жидкости в механич. энергию ведомого звена (вала, штока). По принципу действия различают Г. д., в к-рых ведомое звено перемещается вследствие изменения момента количества движения потока жидкости (гидротурбина, водяное колесо), и объёмные Г. д., действующие от гидростатич. напора в результате наполнения жидкостью рабочих камер и перемещения вытеснителей (под вытеснителем понимается рабочий орган, непосредственно совершающий работу в результате действия на него давления жидкости, выполненный в виде поршня, пластины, зуба шестерни и т. п.). В Г. д. первого типа ведомое звено совершает только вращат. движение. В объёмных Г. д. ведомое звено может совершать как ограниченное возвратно-поступат. или возвратно-поворотное движение (гидроцилиндры), так и неограниченное вращат. движение (гидромоторы). Гидроцилиндры подразделяются на силовые и моментные; в силовом гидроцилиндре (рис. 1) шток, связанный с поршнем, совершает прямолинейное возвратно-поступат. движение относительно цилиндра; в моментном гидроцилиндре, называемом также квадрантом (рис. 2), вал совершает возвратно-поворотное движение относительно корпуса на угол, меньший 360°. Гидромоторы разделяются на поршневые, в к-рых рабочие камеры неподвижны, а вытеснители совершают только возвратно-поступат. движение, и роторные.
Рис. 1. Силовой гидроцилиндр: / - цилиндр; 2 - поршень; 3 - шток.
Рис. 2. Моментный гидроцилиндр: 1 -. корпус; 2 - вал; 3 - лопасть.
В роторных гидромоторах рабочие камеры перемещаются, а вытеснители совершают вращательное движение, к-рое может сочетаться с возвратно-поступат. (кулисные гидромоторы). В зависимости от формы вытеснителей кулисные гидромоторы подразделяют на пластинчатые и роторно-поршневые (радиальные и аксиальные). Наиболее, распространены аксиальные роторно-поршневые (рис. 3), в к-рых давление рабочей жидкости на поршень создаёт на наклонной шайбе реактивное усилие, приводящее во вращение вал. Объёмные Г. д. применяют в гидроприводе машин. Давление рабочей жидкости достигает 35 Мн/мг (350 кгс/см2). Гидромоторы изготовляют мощностью до 3000 квт.
Рис. 3. Аксиальный роторно-поршневой гидромотор: 1 - корпус; 2 - вал-; 3 - ротор; 4 - поршень; 5 - распределительный диск; 6 - наклонная шайба; 7 - толкатель.
Лит.: Объёмные гидравлические приводы, М.. 1969. И. 3. Зайченко.
ГИДРАВЛИЧЕСКИЙ ДРОССЕЛЬ, устройство, устанавливаемое на пути движения жидкости для ограничения её расхода или изменения давления в канале. Г. д. бывают постоянными (нерегулируемыми) и переменными (регулируемыми). К постоянным Г. д. относятся капилляры, втулки, шайбы, пакеты шайб; к переменным - золотниковые пары, дроссели типа сопло-заслонка, винтовые дроссели. В зависимости от режима потока жидкости в рабочем канале (ламинарного или турбулентного) Г. д. могут быть линейными, на к-рых перепад давлений пропорционален расходу жидкости, и квадратичными, на к-рых перепад давлений пропорционален квадрату расхода протекающей жидкости. Г. д. применяют для изменения расхода рабочей жидкости с целью регулирования скорости рабочих органов машин; создания требуемых перепадов давления рабочей жидкости в гидросистемах; управления гидроусилителями в следящих гидроприводах. В. А. Хохлов.
ГИДРАВЛИЧЕСКИЙ ЗАТВОР, то же, что водяной затвор.
ГИДРАВЛИЧЕСКИЙ ИНСТРУМЕНТ, ручная машина с гидравлич. приводом, применяемая для различных технологич. операций: затяжки резьбовых соединений, запрессовки и выпрессовки деталей и др. Г. и. выполняются с поршневыми, ротационными, винтовыми и др. двигателями. Распространение получили Г. и. поступат, действия с поршневыми двигателями, напр. гидравлич. гайковёрты. Г. и. работают бесшумно и достаточно надёжны в эксплуатации. Осн. преимущество Г. и. перед пнев-матич. и электрич. инструментами-возможность получения значительно больших усилий (моментов) при тех же габаритах инструментов. Это обусловлено тем, что гидравлические двигатели могут работать при давлении в 10 раз большем, чем пневматич. двигатели. Однако для Г. и. необходима установка насоса для подачи рабочей жидкости к гидравлич. двигателю, а также монтаж коммуникаций высокого давления. М. Л. Гельфанд.
ГИДРАВЛИЧЕСКИЙ КАНАЛ в гидравлических машинах и гидроприводах, трубка любого поперечного сечения, через к-рую протекает гидравлическая жидкость. Площадь поперечного сечения Г. к. определяется наибольшим расходом и допустимой средней скоростью рабочей жидкости. Эта скорость зависит от назначения Г. к. и вязкости жидкости.
ГИДРАВЛИЧЕСКИЙ КЛАПАН в гидравлических машинах и гидроприводах, устройство, у к-рого размеры рабочего канала изменяются вследствие воздействия проходящего через него потока гидравлической жидкости. Г. к. могут выполнять следующие функции: предохранение гидросистемы и механизмов машины от перегрузки; создание определённого постоянного давления в отд. звеньях гидросистемы; контроль направления потока жидкости; редуцирование давления жидкости в отд. звеньях гидросистемы; создание эпределённого постоянного перепада давления на отд. участках гидросистемы; осуществление заданной последовательности действия рабочих органов машины с целью блокировки. В. А. Хохлов.
ГИДРАВЛИЧЕСКИЙ МОЛОТ, машина для обработки металла действием ударов падающих частей, разгоняемых жидкостью, находящейся под высоким давлением. Г. м. применяются для ковки, объёмной и листовой штамповки. По конструкции аналогичны молотам с др. энергоносителем, напр, паровоздушным молотам. Г. м. не получили большого распространения вследствие сложности регулирования энергии удара.
ГИДРАВЛИЧЕСКИЙ НАСАДОК, гидравлическая насадка, короткая труба для выпуска жидкости в атмосферу или перетекания жидкости из одного резервуара в другой, тоже заполненный жидкостью. Г. н. являются не только трубы, но и каналы, отверстия в толстых стенках, а также щели и зазоры между деталями машин. Длина Г. н., при к-рой возможно заполнение всего сечения канала и достигается максимальная пропускная способность для внешних и внутренних цилиндрических насадков, составляет (3 - 4) d. Для ко-нич. сходящихся и расходящихся насадков существуют оптимальные углы конусности. Наибольшей пропускной способностью обладает коноидальный Г. н., продольное сечение к-рого выполняется по форме вытекающей из отверстия струи. Г. н. спец. конструкций применяют в форсунках для распыления топлива. Расход жидкости при её истечении через Г. н. определяется по формуле
Q = yнасwвых (gН)1/2, где wвых - площадь выходного сечения насадка, Н - напор, к-рый обусловливает течение жидкости, yнас - коэфф. расхода, определяемый опытным путём и зависящий от конструкции насадка, напора, а также от физич. свойств жидкости.
В результате сжатия потока при истечении жидкости в атмосферу в Г. н. может образоваться область с пониженным давлением (до образования вакуума-hВАК --0,75 Н). Если давление достигнет предельного (0,1 Мн/м2, или 10,33 м вод. ст.), произойдёт т. н. срыв работы насадка (нарушение сплошности сечения) и yнас станет равным коэфф. расхода для отверстия. Напор, при к-ром наступает это явление, наз. предельным НПРЕД, а его величина зависит от рода жидкости, её темп-ры и длины насадка [напр., для холодной воды НПРЕД=0,14 Мн/м2(14 м вод. ст.)].
Лит.: Френкель Н. 3.. Гидравлика, 2 изд., М.- Л., 1956. В. А. Орлов.
0633.htm
ГИДРОЛИЗ ДРЕВЕСИНЫ, см. Гидролиз растительных материалов.
ГИДРОЛИЗ РАСТИТЕЛЬНЫХ МАТЕРИАЛОВ, взаимодействие полисахаридов (см. Сахара) непищевого растит, сырья (древесные отходы, хлопковая шелуха, подсолнечная лузга и т. п.) с водой в присутствии катализаторов - минеральных к-т. Исходное растит, сырьё обычно содержит до 75% нерастворимых в воде полисахаридов в виде целлюлозы и ге-мицеллюлоз, при разложении к-рых вначале образуются промежуточные соединения, а затем простейшие сахара-монозы. Наряду с образованием моноз происходит и их частичный распад с образованием фурфурола, органич. к-т, гуминовых к-т и др. веществ. Скорость гидролиза растёт с увеличением темп-ры и концентрации к-ты.
Г. р. м. является основой гидролизных производств, служащих для получения важных пищевых, кормовых и технич. продуктов. В производств, условиях продуктами Г. р. м. являются гидролизах ы- растворы моноз (пентоз и гексоз, в частности глюкозы), летучие вещества (органич.к-ты, спирты) и твёрдый остаток - гидролизный лигнин. Выход моноз может достигать 90% от полисахаридов.
Гидролизаты подвергают дальнейшей био-хим. или хим. переработке в зависимости от профиля гидролизных произ-в и требуемых видов товарной продукции.
Наиболее распространена биохим. переработка гидролизатов для получения белково-витаминных веществ - дрожжей кормовых. Один из важнейших продуктов гидролизного произ-ва - этиловый спирт также получают биохим. путём- сбраживанием гексоз гидролизатов.
Пищевую глюкозу и техническую ксилозу получают соответственно из гексозных и пентозных гидролизатов путём очистки их от минеральных и органич. примесей, упаривания и кристаллизации. При хим. переработке гидролизатов восстановлением содержащихся в них моноз получают многоатомные спирты: из гексоз образуются соответствующие гекси-ты (сорбит, маннит, дульцит и т. д.), а из пентоз - пентиты (ксилит, арабит и др.). Путём гидрогенолиза многоатомных спиртов можно получить глицерин, пропиленгликоль и этиленгликоль. Дегидратацией пентоз получают фурфурол, выход к-рого зависит от состава сырья и условий гидролиза и дегидратации. При дегидратации гексоз образуется леву-линовая к-та, используемая в ряде хи-мич. синтезов.
При пиролизе лигнина образуются смолы и полукокс, к-рый подвергают тер-мич. активации для получения активных газовых и обесцвечивающих углей. При обработке гидролизного лигнина концентрированной серной к-той образуется активный уголь-коллактивит. При обработке щелочами лигнин растворяется, а при последующем подкислении выделяется активированный лигнин, являющийся активным наполнителем синтетич. каучука. Гидролизный лигнин используют также как топливо. См. также Гидролизная промышленность.
С. В. Чепиго.
ГИДРОЛИЗЕР, аппарат для проведения реакции гидролиза в крахмало-паточном произ-ве. Г. бывают периодич. и непрерывного действия. Первые в свою очередь делятся на аппараты, работающие при атм. давлении (заварные чаны) и при повыш. давлении (конверторы). В заварном чане вода и к-та доводятся до интенсивного кипения, в чан из мерника подаётся крахмальное молоко (заварка), гидролиз крахмала (осахаривание) происходит одновременно с выпариванием сиропа. Длительность заварки и осахари-вания 4-4,5 ч. В конверторах гидролиз ведётся при повышенных темп-ре и давлении и продолжается всего 18-20 мин. Г. непрерывного действия имеют ряд преимуществ: непрерывность процесса, позволяющая регулировать осахаривание и, следовательно, повысить качество сиропа; более равномерное потребление пара; сокращение расхода топлива. Все процессы протекают одновременно над разными порциями крахмального молока, к-рое непрерывно и последовательно переходит из одной зоны в другую. Такой Г. состоит из трубчатого 5-секционного подогревателя и осахаривателей. В подогревателе осуществляется клейстеризация крахмала и нагревание клейстера до темп-ры осахаривания (ок. 1450C). Далее сироп поступает на два последовательно соединённых осахаривателя, где завершается осахаривание. Гидролиз продолжается 8-10 мин.
Лит.: Технология крахмало-паточного производства, 3 изд., M., 1959; Бузыкин Н" А., Технологическое оборудование крахмальных и крахмало-паточных заводов, M. |