| ЛЕТИЕ международное, см. Международное гидрологическое десятилетие.
ГИДРОЛОГИЯ (от гидро... и ...логия), наука, занимающаяся изучением природных вод, явлений и процессов, в' них протекающих. Г., являясь наукой геофизической, тесно соприкасается с науками географич., геологич. и биологич. циклов. Предмет изучения Г.- водные объекты: океаны, моря, реки, озёра, водохранилища, болота, скопления влаги в виде снежного покрова, ледников, почвенных и подземных вод. Осн. проблемы совр. Г.: исследования круговорота воды в природе, влияния на него деятельности человека и управление режимом водных объектов и водным режимом территорий; пространственно-временной анализ гидрологич. элементов (уровня, расходов, темп-ры воды и др.) для отд. территорий и Земли в целом; выявление закономерностей в колебаниях этих элементов. Основное практич. приложение Г. заключается в оценке совр. состояния водных ресурсов, прогнозе их будущего состояния и в обосновании их рационального использования.
В связи со специфич. особенностями водных объектов и методов их изучения Г. разделяется на океанологию (Г. моря), гидрологию суши, или собственно Г. (точнее, Г. поверхностных вод суши), гидрогеологию (Г. подземных вод).
Первоначально Г. развивалась как отрасль физич. географии, гидротехники, геологии, навигации и как система науч. знаний оформилась только в начале 20 в. Определение Г. как науки дал В. Г. Глушков (1915). В формировании Г. большую роль сыграло учреждение в 1919 Гидрологического института государственного. Совр. Г. широко пользуется методами, применяемыми в географии, физике и др. науках, всё больше возрастает роль математич. методов.
Лит.: Глушков В. Г., Вопросы теории и методы гидрологических исследований, М., 1961; Калинин Г. П., Проблемы глобальной гидрологии, Л., 1968; С о-колов А. А., Чеботарев А. И., Очерки развития гидрологии в СССР, Л., 1970; Чеботарев А. И., Общая гидрология (воды суши), Л., I960.
А. А. Соколов, А. И. Чеботарёв.
ГИДРОЛОГИЯ СУШИ, раздел гидрологии, изучающий поверхностные воды суши - реки, озёра (водохранилища), болота и ледники; соответственно Г. с. подразделяется на потамологию (учение о реках), лимнологию (озероведение), болотоведение, гляциологию (учение о ледниках). Г. с. занимается изучением процессов формирования водного баланса и стока, разработкой конструкций гидрологич. приборов, прогнозом гидрологического режима, изучением структуры речных потоков, водообмена внутри озёр, русловых и береговых процессов, термических, ледовых и др. физич. явлений, химич. состава вод и т. д. В Г. с. входят: гидрометрия, гидрологические расчёты и гидрологические прогнозы, гидрофизика, гидрохимия, гидрография.
Осн. метод Г. с.- стационарное изучение гидрологич. режима на опорной сети станций, важное значение имеют экспедиц. исследования отд. территорий и объектов, всё большее значение приобретают лабораторные работы.
Выводами Г. с. в отношении гидрологич. режима водных объектов и территорий пользуются для осуществления водо-хоз. мероприятий (строительства водохранилищ и мелиоративных систем, пром. и бытового водоснабжения, канализации стоков, развития рыбного х-ва, судоходства и др.).
Лит.: Аполлов Б. А., Учение о реках, М., 1963; Богословский Б. Б., Озероведение, М., I960; Великанов М. А., Гидрология суши, 4 изд., Л., 1948; Иванов К. Е., Гидрология болот, Л., 1953; Огиевский А. В., Гидрология суши, М., 1952. К. Г. Тихоцкий.
ГИДРОЛОКАТОР (от гидро... и лат. loco - помещаю), гидролокационная станция, гидроакустическая станция (прибор) для определения положения подводных объектов при помощи звуковых сигналов. Кроме расстояния до погружённого в воду объекта, некоторые Г. определяют также его глубину погружения по наклонной дальности и углу направления на объект в вертикальной плоскости. О методах определения Г. местоположения объекта и о применении Г. см. в ст. Гидролокация.
Работа Г. (рис.) происходит следующим образом. Импульс электрич. напряжения, выработанный генератором, через переключатель приём - передача подаётся к электроакустич. преобразователям (вибраторам), излучающим в воду аку-стич. импульс длительностью 10- 100 мсек в определ. телесном угле или во всех направлениях. По окончании излучения вибраторы подключаются к гетеродинному усилителю для приёма и усиления отражённых от объектов импульсных акустич. сигналов. Затем сигналы поступают на индикаторные приборы: рекордер, электродинамич. громкоговоритель, телефоны, электроннолучевую трубку (ЭЛТ). На рекордере измеряется и регистрируется электрохимич. способом на ленте расстояние (дистанция) до объекта; с помощью телефонов и электродинамич. громкоговорителя принятые сигналы прослушиваются на звуковой частоте и классифицируются, по максимуму звучания определяется пеленг; на ЭЛТ высвечивается сигнал от объекта и измеряется дистанция до него и направление (пеленг). Длительность паузы между соседними посылками импульсов составляет неск. сек.
По способу поиска объекта различают Г. шагового поиска, секторного поиска и кругового обзора. При шаговом поиске и пеленговании по максимуму сигнала акустич. систему поворачивают в горизонтальной плоскости на угол 2,5-15grad, делают выдержку (паузу), равную времени прохождения импульсом пути от Г. до объекта, находящегося на максимально возможной дальности, и от объекта до Г., а затем производят след, поворот. При пеленговании фазовым методом акустич. систему выполняют в виде двух раздельных систем, переключаемых бесконтактным коммутац. устройством из режима излучения в режим приёма и обратно. Суммарные и разностные сигналы, снятые с двухканального компенсатора, после усиления и сдвига по фазе подводятся к ЭЛТ и рекордеру, где отсчитывается дистанция. Этот способ характеризуется сравнительно высокой точностью пеленгования, большим (неск. мин) временем обследования водного пространства и возможностью слежения лишь за одним объектом. При секторном поиске акустич. энергия излучается одновременно в определ. секторе, а приём и пеленгование отражённых сигналов производятся при быстром сканировании характеристики направленности в пределах этого сектора. При наиболее распространённом круговом обзоре осуществляют ненаправленное (круговое) излучение и направленный (в пределах узкой вращающейся диаграммы направленности) приём, что обеспечивает обнаружение и пеленгование всех окружающих Г. объектов. Акустич. система (антенна) такого Г. выполняется в виде цилиндра или сферы, состоящих из большого количества отд. вибраторов, и размещается в подъёмно-опускном устройстве или в стационарном обтекателе. • К преимуществам этого способа относятся быстрое обследование всего горизонта, возможность обнаруживать и следить за неск. объектами.
Большинство Г. работает в звуковом и ультразвуковом диапазонах частот (4-40 кгц). Это обусловлено необходимостью получения острой направленности антенны (при относительно небольших её размерах) и достижения заданной разрешающей способности. Г. различного назначения обладают дальностью действия от сотен метров до десятков километров и обеспечивают точность пеленгования ок. 1grad. Для уменьшения неблагоприятного влияния гидрологич. факторов (см. Гидроакустика) на дальность действия применяют Г. с акустич. системой, помещённой в контейнер, буксируемый кораблём на глубине неск. десятков м (Г. с переменной глубиной погружения). С. А, Барченков.
ГИДРОЛОКАЦИЯ (от гидро... и лат. locatio - размещение), определение положения подводных объектов при помощи звуковых сигналов, излучаемых самими объектами (пассивная локация) или возникающих в результате отражения от подводных объектов искусственно создаваемых звуковых сигналов (активная локация). Под термином Г. понимают исключительно звуковую локацию, поскольку звуковые волны являются единственным известным в наст, время видом волн, распространяющихся в мор. среде без значит, ослабления. Г. имеет большое значение в навигации для обнаружения невидимых подводных препятствий, при рыбной ловле для обнаружения косяков и отдельных крупных рыб, в океанологии как инструмент исследования фи-зич. свойств океана, картографирования мор. дна, поиска затонувших судов и т. п., а также в воен. целях для обнаружения подводных лодок, надводных кораблей и др. и наблюдения за ними, для определения координат целей при применении торпедного и ракетного оружия.
При пассивной локации (шумо-пеленгации) с помощью шумопеленгатора определяют направление на источник звука (пеленг источника), пользуясь звуковым полем, создаваемым самим источником. При этом применяют различные методы: поворачивают приёмную акустич. антенну с острой направленностью до положения, в к-ром принятый сигнал имеет макс, интенсивность (т. н. макс. метод пеленгования); измеряют разность фаз между сигналами на выходе двух разнесённых в пространстве антенн (фазовый метод); определяют относит, разницу во времени приёма сигналов двумя разнесёнными антеннами посредством измерения взаимной корреляции (корре-ляц. метод), а также путём комбинации этих методов. При пассивной локации расстояние до объекта определяют по двум или неск. пеленгам, полученным неск. приёмными системами, разнесёнными на расстояния, сравнимые с расстоянием до лоцируемого объекта (метод триангуляции); так определяется не только положение шумящего объекта, но и траектория его движения. Системы пассивной Г. применяются гл. обр. для гидроакустич. оснащения подводных лодок и надводных кораблей. Пассивной Г. пользуются также при обнаружении подводных шумящих объектов с помощью распределённых береговых и донных систем звукоприёмников, данные от к-рых по подводному кабелю передаются на береговые системы обработки, а также с помощью системы гидроакустич. радиобуев, информация от к-рых принимается по радиоканалу спец. самолётами, курсирующими в районе плавания буев. Кроме того, пассивное определение направления на шумящий объект является основой действия акустич. самонаводящихся торпед.
Если источник звука излучает короткий звуковой импульс, то положение источника можно определить по разностям времён прихода импульсов, принятых ненаправленными приёмниками в трёх или более разнесённых по пространству пунктах. Таким способом локализации источников пользуются в береговой системе дальнего обнаружения судов, терпящих бедствие в открытом океане (система СОФАР); источником звука при этом служит взрыв заряда, погружаемого на определ. глубину.
Системы активной Г. основаны на явлении звукового эхо (рис.) и различаются методами врем, модуляции посылаемого сигнала и способами обзора пространства. Для определения дальности объекта чаще всего пользуются импульсной, частотной и шумовой модуляциями сигнала. При импульсной модуляции расстояние R до цели находится по времени запаздывания Г0 отражённого импульса: К = с£0/2, где с - скорость распространения звука в среде. При частотной модуляции частота f излучаемого сигнала меняется со временем t по линейному закону f(t)=fo + yt, где ft, и у - постоянные начальная частота и скорость изменения частоты. Поэтому отражённый сигнал, принятый приёмником, будет отличаться по частоте от сигнала, излучаемого в данный момент, т. к. принятый сигнал представляет собой задержанную на время to копию посланного сигнала, а частота излучаемого сигнала за время to изменилась согласно приведённой формуле. Для неподвижной цели разность частот будет постоянной и равной f_ = = yta. Выделив разностную частоту, определяют расстояние до цели R по формуле R = cf-/2y. Аналогична схема действия гидролокатора с шумовым излучением и корреляц. обработкой сигнала.
Осн. характеристикой гидролокаторов является дальность обнаружения, к-рая зависит от мощности излучаемого сигнала, от уровня акустич. помех и от условий распространения звука в водной среде. Дальность обнаружения обычно определяют по величине т. н. порогового сигнала, т. е. сигнала миним. интенсивности, ещё различимого на фоне помех. Если помеха и сигнал независимы, то пороговый сигнал определяется отношением полной энергии полезного сигнала к мощности помехи в данном частотном интервале. Т. о., дальность обнаружения для систем с различными видами модуляции будет одинаковой, если одинакова их полная энергия излучения. Если осн. помеха - хаотич. отражение сигнала от неоднородностей среды (т. н. ревер-берац. помеха), то пороговый сигнал не зависит от мощности излучаемого сигнала, а определяется исключительно шириной полосы его частот; в этом случае более эффективны системы с частотной модуляцией сигнала и с шумовой посылкой.
Наряду с помехами на дальность обнаружения оказывает влияние рефракция, имеющая место в сложных гидрологич. условиях. Совр. гидролокаторы способны обнаруживать большие отражающие объекты в среднем на расстоянии неск. км.
Лит.: Клюкин И. И., Подводный звук. Л., 1963; Сташкевич А. П., Акустика моря, Л., 1966; Тюрин А. М., Сташкевич А. П., Таранов Э. С.. Основы гидроакустики, Л., 1966.
ГИДРОМЕДУЗА (Hydromedusa), 1) род пресмыкающихся сем. змеиношейных черепах. Характеризуются очень длинной шеей, превышающей длину спинного щита, и наличием на передней ноге 4 когтей (рис.). Длина панциря Г. не превышает 30 см. 2 вида; распространены в пресных водоёмах Юж. Америки. Питаются преим. мелкими рыбами. Яйца откладывают на берегу водоёмов. 2) Медузоид-ные особи нек-рых кишечнополостных животных класса гидроидных.
ГидромедузаН. tectifera.
ГИДРОМЕЛИОРАТИВНЫЕ ИНСТИТУТЫ, готовят инженеров для водохо-зяйственных и с.-х. предприятий, учреждений, орг-ций и др. по специальностям гидромелиорация и механизация гидромелиоративных работ. В СССР в 1971 имелось 5 Г. и.: Джамбулский строительный (осн. в 1961), Московский гид-ромелиоратицный институт (1930), Новочеркасский инженерно-мелиоративный институт (1930), Ташкентский ин-т инженеров ирригации и механизации с. х-ва (1934), Украинский ин-т инженеров водного х-ва (1930, осн. как Киевский инженерно-мелиоративный ин-т, в 1959 был переведён в Ровно и получил совр. название). Во всех Г. и. имеются дневные и заочные ф-ты (в Украинском ин-те, кроме того, вечернее отделение и общетехнич. ф-т), аспирантура. Московскому и Новочеркасскому Г. и. предоставлено право приёма к защите кандидатских и докторских диссертаций, Ташкентскому и Украинскому - кандидатских. Срок обучения в Г. и. 4 года 10 мес. Выпускники Г. и. защищают дипломные проекты и получают квалификацию инженера-гидротехника и инженера-механика. Б. А. Васильев.
ГИДРОМЕТАЛЛУРГИЯ (от гидро... и металлургия), извлечение металлов из руд, концентратов и отходов различных произ-в водными растворами хим. реагентов с последующим выделением металлов из растворов.
На возможность применения гидроме-таллургич. процессов для извлечения металлов из руд указывал М. В. Ломоносов (1763). Значит, вклад в развитие Г. внёс русский учёный П. Р. Багратион, создавший теорию цианирования золота (1843). В нач. 20 в. пром. значение приобрела Г. меди. Позднее были разработаны гидрометаллургич. способы получения мн. др. металлов.
Г. включает ряд осн. технологич. операций, выполняемых в определённой последовательности. Механич. обработка руды - дробление и измельчение с целью полного или частичного раскрытия зёрен минералов, содержащих извлекаемый металл. Изменение хим. состава руд |